Guia completa de Git y GitHub

Edison Achalma

Escuela Profesional de Economia, Universidad Nacional de San Cristébal de Huamanga

Resumen

Esta guia completa de Git y GitHub ofrece una vision integral y actualizada
del sistema de control de versiones mds utilizado en el desarrollo de soft-
ware. Desde los fundamentos tedricos (arquitectura, objetos y estados de
archivos) hasta comandos esenciales, flujos de trabajo diarios reales, resolu-
cién avanzada de conflictos, mejores practicas modernas (incluyendo Con-
ventional Commits y trunk-based development) y ejemplos practicos apli-
cados en 2025, este documento sirve como referencia exhaustiva tanto para
principiantes que dan sus primeros pasos como para desarrolladores interme-
dios que desean optimizar su flujo de trabajo diario en entornos individuales,
equipos pequeiios y proyectos colaborativos en GitHub.

Palabras Claves: Git, GitHub, Control de versiones

Tabla de contenidos

Introduction 4
1 Instalacion y Configuracion 4
1.1 InstalaciOn e e e e 4
1.1.1 Método 1: Paquetes predeterminados (rdpido y estable) 4

1.1.2 Método 2: Desde la fuente (version mas reciente) 4

1.2 Verificar Instalacidon 5

1.3 Configuracién Inicial L Lo 5

1.4 Configuracion de claves SSHparaGitHub 5
1.4.1 Generarunaclave SSH, 5

1.4.2 Anfadirlaclaveassh-agent L. 6

1.43 VincularlaclaveaGitHub 6

2 Conceptos Fundamentales 6
2.1 Objetosde Git oo e e e 6
2.2 Referencias Simbdlicas 6

Edison Achalma @ https://orcid.org/0000-0001-6996-3364

El autor no tiene conflictos de interés que revelar. Los roles de autor se clasificaron utilizando la taxonomia de
roles de colaborador (CRediT; https://credit.niso.org/) de la siguiente manera: Edison Achalma: conceptualizacion,
redaccién

La correspondencia relativa a este articulo debe dirigirse a Edison Achalma, Email: el-
mer.achalma.09 @unsch.edu.pe

https://orcid.org/0000-0001-6996-3364
mailto:elmer.achalma.09@unsch.edu.pe
mailto:elmer.achalma.09@unsch.edu.pe

GUIA COMPLETA DE GIT Y GITHUB

2.3 Estadosde Archivos
24 SHA-TyHashes.
Comandos Basicos

3.1 Crear e Inicializar Repositorios
3.2 EstadoyDiferencias e
3.3 Anadir Archivos (Staging)o
34 CommilSot e e e e
3.5 Historial
3.6 Deshacer Cambios
3.7 Eliminary Mover Archivos
Branching y Merging

4.1 Conceptosde Ramas
4.2 OperacionesconRamas L oL
4.3 Merging (Fusionar) L e
44 Rebasing.
4.5 Cherry-pick e
Trabajo Remoto

5.1 RepositoriosRemotos L L
5.2 Fetch,PullyPush
5.3 Tracking Branches
Comandos Avanzados

6.1 Stash (Guardar Temporalmente)
6.2 Tags e
6.3 BuscaryEncontrar
6.4 Reflog e
6.5 Worktrees
6.6 Submodules L
6.7 ArchivosyBundles
Resolucion de Conflictos

7.1 Identificar Conflictos L
7.2 Marcadoresde Conflicto
7.3 Resolver Conflictos
Git Workflows

81 GitFlow e
82 GitHubFlow
8.3 Trunk-Based Development
Ejemplos de uso diario de Git

9.1 Flujo individual / Freelance / Proyectos personales
9.2 Flujo tipico de equipo mediano/pequefio con Pull Requests
9.3 Correccion rapida de bug en produccion Lo
9.4 Flujo cuando trabajas en varias tareas al mismo tiempo

9.5 Mini-resumen de comandos que mas se usan en la practicadiaria

10
10
10
11

11
11
12
12

12
12
13
13
14
14
14
14

15
15
15
15

15
15
16
16

GUIA COMPLETA DE GIT Y GITHUB

10

11

12

13

14

15

16

17

18

Mejores Practicas

10.1 Commits v v vt e
10.2 Branching,
10.3 Colaboraciéon
104 .gitignore

Comandos de Bajo Nivel (Plumbing)

11.1 Inspecciénde Objetos
11.2 Manipulaciéondel Index
11.3 ObjetosyHashes

Hooks y Automatizacion

12.1 GitHooks
122 Aliases

Troubleshooting

13.1 Problemas Comunes

Referencia Rapida

14.1 Sintaxis de Referencias
14.2 Especificar Rangos
14.3 Variablesde Entorno
144 Configuracién Util
14.5 Comandos de Emergencia
14.6 Atajos de Teclado (Shell)
14.7 Formato de Commit Convencional

Recursos Adicionales

15.1 Documentacién Oficial
15.2 Tutorialesy Cursos
15.3 Herramientas
15.4 EXtensiones oo oo

Glosario

Conclusion

Publicaciones Similares

19
19
19
20
20

20
21
21
21

21
21
22

23
23

24
24
24
25
25
25
26
26

27
27
27
27
27

27

28

28

GUIA COMPLETA DE GIT Y GITHUB 4

Guia completa de Git y GitHub

Git es un sistema de control de versiones distribuido rdpido, escalable y eficiente. Fue
creado por Linus Torvalds en 2005 para el desarrollo del kernel de Linux.
Caracteristicas principales:

* Sistema distribuido (cada desarrollador tiene una copia completa del historial)
* Extremadamente rapido

* Soporte robusto para desarrollo no lineal (branching y merging)

Integridad de datos garantizada mediante SHA-1

Arquitectura de Git

Git almacena los datos como instantdneas (snapshots) del proyecto completo, no como
diferencias entre archivos. Cada commit es una instantdnea completa del estado del proyecto.

Tres areas principales:

1. Working Directory: Tu directorio de trabajo actual
2. Staging Area (Index): Area de preparacion para el préximo commit

3. Repository (.git directory): Base de datos de objetos y metadata

1 Instalacién y Configuracion
1.1 Instalaciéon
1.1.1 Meétodo 1: Paquetes predeterminados (rapido y estable)
Linux (Ubuntu/Debian):

sudo apt-get update
sudo apt-get install git

Linux (Fedora):
sudo dnf install git
macOS:
brew install git

Windows: Descargar desde: https://git-scm.com/download/win
1.1.2 Meétodo 2: Desde la fuente (versién mds reciente)

1. Instala las dependencias:

sudo apt update
sudo apt install libz-dev libssl-dev libcurl4-gnutls-dev \
libexpatl-dev gettext cmake gcc

2. Descarga y descomprime la version deseada (ejemplo: 2.34.1):

GUIA COMPLETA DE GIT Y GITHUB 5

1.2

git

1.3

git
git

git
git
git

git

git
git
git

14

mkdir tmp && cd tmp

curl -o git.tar.gz \
https://mirrors.edge.kernel.org/pub/software/scm/git/git-2.34.1.tar.gz
tar -zxf git.tar.gz

cd git—*

. Compila e instala:

make prefix=/usr/local all
sudo make prefix=/usr/local install
exec bash

Verificar Instalacion
--version

Configuracion Inicial

Configurar identidad (obligatorio):

config --global user.name "Tu Nombre"
config --global user.email "tu.email@ejemplo.com"

Editor por defecto:

config --global core.editor "vim"
config --global core.editor "nano"
config --global core.editor "code --wait" # VS Code

Configurar rama principal:
config --global init.defaultBranch main
Ver configuracion:

config --list
config --list --show-origin # Ver de dénde viene cada configuracidén
config user.name # Ver configuracién especifica

Niveles de configuracion:

* —-system: Para todos los usuarios del sistema (/etc/gitconfig)
* ——global: Para tu usuario (~/.gitconfig)
* —-local: Para el repositorio actual (.git/config) [predeterminado]

Configuracion de claves SSH para GitHub

1.4.1 Generar una clave SSH

1. Verifica claves existentes:

GUIA COMPLETA DE GIT Y GITHUB

1.4.2

1.4.3

2.
3.

ls -al ~/.ssh

Si no hay claves, crea el directorio: mkdir ~/.ssh.

. Genera un par de claves:

ssh-keygen -t rsa -b 4096 -C "tu.email@example.com"

Acepta el nombre predeterminado y afiade una contrasefia (opcional).

Afiadir la clave a ssh-agent

. Inicia el agente:

eval "$(ssh-agent -s)"

. Anade la clave privada:

ssh-add ~/.ssh/id _rsa

Vincular la clave a GitHub

. Copia la clave publica:

e Linux/Mac: cat ~/.ssh/id_rsa.pub
* Windows: clip < ~/.ssh/id_rsa.pub

En GitHub, ve a Settings > SSH and GPG keys > New SSH key, pega la clave y guérdala.

Prueba la conexion:

ssh -T git@github.com

Resultado esperado: Hi tu_usuario! You've successfully authenticated...

2 Conceptos Fundamentales

2.1 Objetos de Git

1.
2.
3.
4.

Git maneja cuatro tipos de objetos:

Blob: Contenido de archivos

Tree: Estructura de directorios (apunta a blobs y otros trees)

Commit: Instantdnea del proyecto (apunta a un tree y commits padres)
Tag: Referencia nombrada a un commit especifico

2.2 Referencias Simbolicas

HEAD: Apunta al commit actual (normalmente la punta de una rama)
Rama (branch): Puntero mévil a un commit

Tag: Puntero fijo a un commit

Remote: Referencias a ramas en repositorios remotos

GUIA COMPLETA DE GIT Y GITHUB

2.3

Estados de Archivos

1. Untracked: Archivos nuevos que Git no rastrea

2. Unmodified: Archivos rastreados sin cambios

3. Modified: Archivos rastreados con cambios

4. Staged: Archivos preparados para el proximo commit

24

SHA-1 y Hashes

Cada objeto en Git tiene un identificador tnico de 40 caracteres hexadecimales (hash
SHA-1). Puedes usar las primeras 7 caracteres para referencias cortas.

3 Comandos Basicos

3.1 Crear e Inicializar Repositorios

git
git
git

git
git
git

git
git
git

3.2

git
git
git
git

git
git
git
git
git
git
git
git

Crear nuevo repositorio:

init
init nombre-proyecto

init --bare # Repositorio sin working directory (para servidores)

Clonar repositorio existente:

clone <url>

clone https://github.com/usuario/repositorio.git
clone <url> <directorio-destino>

Solo las tltimas n confirmaciones:

clone --depth 1 <url> # Clone superficial (solo dltimo commit)
clone -b <rama> <url> # Clonar rama especifica, o,

Formato
Formato
Mostrar

Cambios
Cambios

corto
abreviado
rama e informacidén de tracking

no staged (no confirmados)
staged

Sinénimo de --staged
Todos los cambios desde ultimo commit

clone —-branch=nombre-rama <url>
Estado y Diferencias
Ver estado del repositorio:
status
status -s #
status --short #
status -b #
Ver cambios:
diff #
diff --staged #
diff --cached #
diff HEAD #
diff <ramal> <rama2> #

diff <commitl> <commit2>
diff --stat #
diff --name-only #

Diferencias entre ramas

Diferencias entre commits
Resumen estadistico
Solo nombres de archivos

GUIA COMPLETA DE GIT Y GITHUB

3.3

git
git
git
git
git
git

34

git
git
git
git
git
git

git
git
git
git
git
git
git
git
git
git
git
git

git
git
git
git
git

Anadir Archivos (Staging)

add <archivo> #
add . #
add -A #
add *.js #
add -p #
add -u #
Commits

Crear commit:

commit -m "Mensaje del
commit -am "Mensaje"
commit

commit --amend

Anadir
Afadir
Afladir
Afadir
Afadir
Afadir

commit"

archivo especifico

todos los archivos del directorio actual
todos los archivos del repositorio

por patroén

interactivamente por fragmentos

solo archivos ya rastreados modificados

Add + commit (solo tracked files)

Abre

editor para mensaje largo

Modificar dltimo commit
commit --amend -m "Nuevo mensaje" # Cambiar mensaje del ultimo commit
commit --amend --no-edit # Afiadir cambios sin cambiar mensaje

Buenas practicas para mensajes:

Primera linea: resumen conciso (50 caracteres o menos)

Linea en blanco

Descripcion detallada (72 caracteres por linea)
Usar imperativo: “Anade” no “Afiadido”

3.5 Historial

Ver historial:

log

log --oneline
log --graph
log ——all

log ——decorate
log -p

log -n 5

log --since="2 weeks"
log ——author="Edison"
log ——grep="palabra"
log —— archivo.txt

log --follow archivo.txt

#
#
#
#
#
#
#
#
#
#

Formatos personalizados:

Una linea por commit

Vista gréafica

Todas las ramas

Mostrar referencias (ramas, tags)
Mostrar diferencias (patch)
Ultimos 5 commits

Commits de las tltimas 2 semanas
Commits de un autor

Buscar en mensajes de commit
Historial de un archivo

Incluir renombrados

log —-pretty=format:"%h - %an, %ar : %s"

log --pretty=format:"%h %s" --graph

log ——graph --oneline --all --decorate

config --global alias.tree "log —-graph --decorate --all -—oneline"

tree

GUIA COMPLETA DE GIT Y GITHUB 9

Placeholders utiles:

%h: Hash abreviado

%H: Hash completo

%an: Nombre del autor
%ae: Email del autor
%ad: Fecha del autor
%ar: Fecha relativa

%s: Mensaje del commit

3.6 Deshacer Cambios

git
git
git

git
git
git

git
git
git
git

git
git
git

3.7

git
git
git
git

Descartar cambios en working directory:

checkout -- <archivo>
restore <archivo>
restore

Método antiguo
Método moderno (Git 2.23+)
Restaurar todos los archivos

Quitar archivos del staging area:

reset HEAD <archivo>
restore —-staged <archivo> # Método moderno
reset HEAD

Deshacer commits:

reset --soft HEAD~1
reset ——mixed HEAD~1
reset —-—-hard HEAD~1
reset <commit>

Método antiguo

Quitar todos

Mantiene cambios en staging

Mantiene cambios en working directory [default]
CUIDADO: Elimina todo

Volver a un commit especifico

Revertir commit (seguro):

revert <commit>
revert HEAD
revert —-—no-commit HEAD~3..HEAD # Revertir tltimos 3 commits

Crea nuevo commit que deshace cambios
Revertir Gltimo commit

Eliminar y Mover Archivos

rm
rm
rm
mv

<archivo>

—-—cached <archivo>
-r directorio/
<origen> <destino>

4.1 Conceptos de Ramas

Eliminar archivo

Quitar del tracking pero mantener en disco
Eliminar directorio recursivamente

Renombrar/mover archivo

4 Branching y Merging

Una rama en Git es simplemente un puntero mévil a un commit. La rama por defecto se
llama main (anteriormente master).

GUIA COMPLETA DE GIT Y GITHUB

4.2

git
git
git

git
git
git
git
git
git

git
git
git

git
git
git

git
git

4.3

git
git
git
git

Operaciones con Ramas

Crear ramas:

branch <nombre-rama> #
checkout -b <nombre-rama>
switch -c¢ <nombre-rama>
Listar ramas:
branch #
branch -a #
branch -r #
branch -v #
branch --merged #
branch --no-merged #
Cambiar de rama:
checkout <rama> #
switch <rama> #
checkout - #
Eliminar ramas:
branch -d <rama> #
branch -D <rama> #

Crear rama
Crear y cambiar
Método moderno (Git 2.23+)

Ramas locales

Todas las ramas (locales + remotas)
Solo ramas remotas

Con tGltimo commit de cada rama
Ramas fusionadas con la actual
Ramas no fusionadas

Método antiguo
Método moderno (Git 2.23+)
Volver a rama anterior

Eliminar rama fusionada
Forzar eliminacidn

push origin --delete <rama> # Eliminar rama remota

Renombrar rama:

branch -m <nuevo-nombre

branch -m <viejo> <nuevo>

Merging (Fusionar)

Merge basico:
merge <rama>
merge --no-ff <rama>

merge —--squash <rama>
merge ——abort

Tipos de merge:

>

#
#
#
#

Renombrar rama actual
Renombrar otra rama

Fusionar rama en la actual
Forzar commit de merge
Fusionar como un solo commit
Cancelar merge en conflicto

1. Fast-forward: Avance directo sin commit de merge
2. Three-way merge: Crea commit de merge con dos padres
3. Squash merge: Combina todos los commits en uno

4.4

Rebasing

Rebase reescribe el historial moviendo commits a una nueva base.

GUIA COMPLETA DE GIT Y GITHUB 11

git
git
git
git
git
git

4.5

git
git
git
git
git

5.1

git
git
git

git
git

git
git
git

rebase <rama-base> # Rebasar rama actual
rebase main # Rebasar sobre main
rebase -i HEAD~3 # Rebase interactivo (altimos 3 commits)
rebase --continue # Continuar después de resolver conflictos
rebase —-abort # Cancelar rebase

#

rebase --skip Saltar commit actual

Rebase interactivo - comandos:

pick: Usar commit

reword: Cambiar mensaje

edit: Editar commit

squash: Fusionar con commit anterior
fixup: Como squash pero descarta mensaje
drop: Eliminar commit

REGLA DE ORO: Nunca hagas rebase de commits publicos/compartidos

Cherry-pick

Aplicar commits especificos de una rama a otra:

cherry-pick <commit> # Aplicar un commit
cherry-pick <commitl> <commit2> # Varios commits

cherry-pick <commitl>..<commit2> # Rango de commits
cherry-pick --continue # Continuar después de conflictos
cherry-pick —-abort # Cancelar
5 Trabajo Remoto
Repositorios Remotos
Ver remotos:
remote # Listar remotos
remote -v # Con URLs
remote show origin # Informacidén detallada
Anadir remotos:
remote add <nombre> <url>

remote add origin https://github.com/usuario/repo.git

Modificar remotos:

remote rename <viejo> <nuevo>
remote remove <nombre>
remote set-url origin <nueva-url>

GUIA COMPLETA DE GIT Y GITHUB 12

5.2

git
git
git
git

git
git
git
git

git
git
git
git
git
git
git
git

5.3

git
git
git

6.1

git
git
git
git
git
git
git
git
git

Fetch, Pull y Push

Fetch (descargar sin fusionar):

fetch # Fetch de origin

fetch origin # Fetch de origin explicitamente
fetch --all # Fetch de todos los remotos
fetch origin <rama> # Fetch de rama especifica

Pull (fetch + merge):
pull # Pull de rama actual
pull origin main # Pull de rama especifica
pull --rebase # Pull con rebase en lugar de merge

pull --rebase origin main

Push (enviar cambios):

push # Push de rama actual

push origin main # Push a rama especifica
push -u origin main # Push y establecer upstream
push --all # Push de todas las ramas
push --tags # Push de todos los tags
push origin --delete <rama> # Eliminar rama remota
push --force # Forzar push (PELIGROSO)

push -—-force-with-lease # Forzar pero mds seguro

Tracking Branches

branch -u origin/main # Establecer upstream de rama actual
branch --set-upstream-to=origin/main
branch -vv # Ver tracking branches

6 Comandos Avanzados
Stash (Guardar Temporalmente)

Guardar cambios sin hacer commit:

stash Guardar cambios

stash save "mensaje" Con mensaje descriptivo

stash -u Incluir archivos untracked

stash --all Incluir todo (untracked + ignored)
stash list Listar stashes

Ver cambios del ultimo stash

Ver diff completo

Aplicar Gltimo stash (lo mantiene)
Aplicar y eliminar dltimo stash

stash show
stash show -p
stash apply
stash pop

H OH O H OH OB OB OH R R

GUIA COMPLETA DE GIT Y GITHUB 13

git stash apply stash@{2} # Aplicar stash especifico
git stash drop stash@{0} # Eliminar stash especifico

git stash clear # Eliminar todos los stashes
git stash branch <rama> # Crear rama desde stash
6.2 Tags

Marcar puntos importantes en el historial:
Tags ligeros:

git tag v1.0 # Tag ligero
git tag v1.0 <commit> # Tag en commit especifico

Tags anotados (recomendado):

git tag -a v1.0 -m "Versiémn 1.0"
git tag -a v1.0 <commit> -m "mensaje"

Operaciones con tags:

git tag

git tag -1 "v1.8.x%"
git show v1.0

git push origin v1.0

Listar tags

Listar con patrén

Ver informacién del tag

Push de tag especifico

git push origin --tags Push de todos los tags

git tag -d v1.0 Eliminar tag local

git push origin --delete v1.0 # Eliminar tag remoto

git checkout v1.0 # Checkout a tag (detached HEAD)

H O H O H OB B R

6.3 Buscar y Encontrar

Grep (buscar en archivos):

git grep "texto" # Buscar en working directory
git grep "texto" <commit> # Buscar en commit especifico
git grep -n "texto" # Con nimeros de linea

git grep —-count "texto" # Contar coincidencias

git grep -i "texto" # Case insensitive

Bisect (biisqueda binaria de bugs):

git bisect start # Iniciar bisect

git bisect bad # Marcar commit actual como malo
git bisect good <commit> # Marcar commit bueno conocido

Git checkout commits intermedios automdticamente

git bisect good # Marcar como bueno

git bisect bad # Marcar como malo

git bisect reset # Terminar bisect

GUIA COMPLETA DE GIT Y GITHUB 14

git
git
git
git

6.4

git
git
git
git

6.5

git
git
git
git

6.6

git
git
git
git
git

6.7

git
git

git
git
git

Blame (ver quién modificé cada linea):

blame <archivo> # Ver autor de cada linea
blame -L 10,20 <archivo> # Solo lineas 10-20

blame -e <archivo> # Mostrar emails

blame -w <archivo> # Ignorar cambios de whitespace
Reflog

Registro de todos los cambios a HEAD (incluso commits “perdidos™):

reflog # Ver reflog
reflog show # Igual que git reflog
reflog --all # Reflog de todas las referencias

reset --hard HEAD@{2} # Volver a estado anterior

Worktrees

Tener multiples working directories del mismo repositorio:

worktree add <path> <branch> # Crear worktree
worktree list # Listar worktrees

worktree remove <path> # Eliminar worktree

worktree prune # Limpiar worktrees obsoletos

Submodules

Incluir repositorios dentro de repositorios:

submodule add <url> <path> # Afiadir submodule
submodule init # Inicializar submodules
submodule update # Actualizar submodules
submodule update --init --recursive # Init + update recursivo
clone --recurse-submodules <url> # Clonar con submodules
Archivos y Bundles

Archive (crear archivo del repositorio):

archive --format=zip --output=proyecto.zip HEAD
archive --format=tar.gz --output=proyecto.tar.gz main

Bundle (repositorio portatil):
bundle create repo.bundle HEAD --all

clone repo.bundle repo-clonado
bundle verify repo.bundle

GUIA COMPLETA DE GIT Y GITHUB 15

7 Resolucion de Conflictos
7.1 Identificar Conflictos

Cuando hay conflictos durante merge o rebase:

git status # Ver archivos con conflictos
git diff # Ver conflictos

git diff --ours # Ver nuestra versidn

git diff --theirs # Ver su versiodn

7.2 Marcadores de Conflicto

<<<<<<< HEAD
Tu versidén del cédigo

Su versidén del cddigo
>>>>>>> rama-a-fusionar

7.3 Resolver Conflictos

Manualmente:

1. Editar archivos para resolver conflictos

2. Eliminar marcadores <<<<<<<, =======>>>>>>>
3. git add <archivo> para marcar como resuelto
4. git commit 0 git rebase --continue

Con herramientas:

git mergetool # Abrir herramienta de merge
git mergetool --tool=vimdiff
git config --global merge.tool meld # Configurar herramienta

Estrategias:
git merge -X ours <rama> # Preferir nuestra versidn
git merge -X theirs <rama> # Preferir su versidn
git checkout --ours <archivo> # Tomar nuestra versidn

git checkout --theirs <archivo> # Tomar su versidn

8 Git Workflows
8.1 Git Flow
Modelo de branching con ramas especificas:
* main: Cédigo de produccion
* develop: Rama de desarrollo

o feature/*: Nuevas caracteristicas
* release/*: Preparacion de releases

GUIA COMPLETA DE GIT Y GITHUB 16

* hotfix/*: Correcciones urgentes
Comandos (con extension git-flow):

git flow init

git flow feature start nueva-caracteristica
git flow feature finish nueva-caracteristica
git flow release start 1.0.0

git flow release finish 1.0.0

git flow hotfix start fix-critico

git flow hotfix finish fix-critico

8.2 GitHub Flow

Workflow més simple:

Crear rama desde main
Hacer commits

Abrir Pull Request
Revisién de codigo
Merge amain

Deploy automatico

SNk W=

8.3 Trunk-Based Development

* Una rama principal (main o trunk)

* Commits frecuentes y pequeiios

* Feature flags para ocultar trabajo en progreso
* CI/CD robusto

9 Ejemplos de uso diario de Git

Flujos de trabajo mds comunes que uso todos los dias en diferentes tipos de proyectos
y entornos (individuales, equipos pequefios, medianos y open-source).

9.1 Flujo individual / Freelance / Proyectos personales

Al empezar el dia
git pull origin main # Siempre sincronizo primero
git status # Muestra el estado actual del repositorio.

Trabajo en una nueva funcionalidad
git switch -c feat/login-social # Creo rama con convencidn clara

... desarrollo varias horas
git add .

git commit -m "feat: implementar login con Google y GitHub"

Pequefia correccidén rapida

GUIA COMPLETA DE GIT Y GITHUB 17

git add src/components/LoginForm.tsx
git commit -m "fix: corregir validacidén de email en formulario"

Al final del dia o antes de push
git branch -M main # Muestra las ramas existentes.
git switch main

git pull # Vuelvo a sincronizar por si alguien mas empujd
git switch feat/login-social
git rebase main # Mantengo mi rama actualizada (rebase limpio)

git switch main

git merge —--ff-only feat/login-social # Fast-forward si es posible

git push -u origin main # Envia los cambios al repositorio remoto.

git branch -d feat/login-social # Elimino la rama ya que estd integrada

Opcional: commit squash al final (muy comin en proyectos pequefios)
git merge --squash feat/login-social

git commit -m "feat: login con proveedores sociales + validaciones"
git push

Ventajas: Muy répido, historial relativamente limpio, poco overhead.

9.2 Flujo tipico de equipo mediano/pequeiio con Pull Requests

Inicio de jornada / después de stand-up

git fetch --prune # Limpio referencias remotas obsoletas
git switch main
git pull

Nueva tarea (ej: ticket #456 - mejorar rendimiento de dashboard)
git switch -c feature/456-dashboard-perf

Desarrollo normal (varios commits)
git commit -m "feat(dashboard): lazy loading de graficos pesados"
git commit -m "refactor: extraer hook useChartData"

Antes de terminar el dia
git rebase -i origin/main # 0 rebase main si ya estd actualizado
Squash/reword si quiero limpiar commits antes de PR

Subo y creo Pull Request
git push -u origin feature/456-dashboard-perf

En GitHub/GitLab:

- Creo PR -+ aflado reviewers - espero revisidn

- Después de aprobar y pasar CI/CD:

Merge squash / merge commit /

rebase & merge (depende de la politica del equipo)

GUIA COMPLETA DE GIT Y GITHUB

Una vez mergeado (normalmente por el reviewer o bot)

git switch main

git pull

git fetch --prune

git branch -d feature/456-dashboard-perf # Limpio localmente

Variante muy comin en 2025:
Merge squash — un solo commit limpio en main con el titulo del PR

9.3 Correccion rapida de bug en produccion

Opcidn mds rapida y segura (recomendada)
git switch main

git pull

git switch -c hotfix/789-boton-pago-falla

Arreglo rapido (1-3 commits)
git commit -m "fix: corregir validacién de tarjeta en checkout"

git push -u origin hotfix/789-boton-pago-falla

- Crear PR répido hacia main
- Revisioén exprés (o auto-merge si es critico)
- Merge (preferiblemente squash o rebase)

Después del deploy

git switch main

git pull

git tag hotfix-2025-12-30-boton-pago # 0 v1.2.3-hotfix si usas semver
git push —-tags

9.4 Flujo cuando trabajas en varias tareas al mismo tiempo

Estoy en medio de feature/cuenta-premium
git status

-+ Aparece bug urgente
git stash push -m "WIP premium checkout"

Arreglo réapido

git switch -c hotfix/791-api-timeout

... fix ...

git commit -m "fix: aumentar timeout en llamada a /reports"
git push -u origin hotfix/791-api-timeout

- PR rapido - merge

18

GUIA COMPLETA DE GIT Y GITHUB

Vuelvo a lo mio

git switch feature/cuenta-premium

git stash pop

Continto donde estaba...

9.5 Mini-resumen de comandos que mas se usan en la practica diaria

19

Accién

Comando mas comun en 2025

Frecuencia

Sincronizar al empezar
Crear rama de tarea
Commit atémico

Actualizar rama antes de PR
Subir rama nueva

Limpiar después de merge

Guardar trabajo temporal

Ver estado répido
Historial bonito

Comparar con main

git

pull

git

pull/git fetch --prune && git

switch -c

feat/ticket-xxx—-nombre

git commit -m "tipo: descripcién
corta"

git rebase maino git merge main
git push -u origin nombre-rama
git branch -d rama-antigua

git stash push -m "..."/git stash
pop

git status -sboalias gs

git log ——oneline --graph

—--decorate --all

git

diff main...

Recomendacion final para tu dia a dia

Adopta el hébito de:

[\

. Siempre pull al empezar
. Trabajar en ramas cortas y con nombres claros

3. Commits pequefios y descriptivos (convencién Conventional Commits es la mds usada

actualmente)

4. Actualizar tu rama frecuentemente (rebase o merge main)

5. Eliminar ramas una vez integradas

10 Mejores Practicas

Mensajes descriptivos: Explica el “qué” y el “por qué
Commits frecuentes: Mejor muchos commits pequefios que pocos grandes

£99 £99

10.1 Commits
1. Commits atémicos: Un commit = un cambio l6gico
2.
3.
4. No commitear archivos generados: Usar .gitignore
5.

10.2 Branching

D=

Revisar antes de commitear: git diff --staged

Nombres descriptivos: feature/nueva-funcionalidad, bugfix/issue-123
. Ramas de vida corta: Fusionar frecuentemente

GUIA COMPLETA DE GIT Y GITHUB 20

(98]

. Mantener ramas actualizadas: Hacer merge/rebase regular de main
Eliminar ramas fusionadas: Mantener repositorio limpio
Proteger rama principal: Requerir pull requests y revisiones

Rl

[
5
()

Colaboracion

Pull antes de push: Evitar conflictos

Revisar cdodigo: Pull requests con revisiones

No reescribir historial publico: Evitar rebase/amend de commits pusheados
Comunicacion: Documentar decisiones importantes

CI/CD: Automatizar tests y despliegues

Nk L=

10.4 .gitignore

Ejemplos comunes:

Node. js
node_modules/
npm-debug.log
.env

Python
__pycache__/
*.py Lcod]
venv/
.pytest_cache/

IDE
.vscode/
.idea/

* . SWp

0S
.DS_Store
Thumbs .db

Build
dist/
build/
*.log

Comandos utiles:

git config --global core.excludesfile ~/.gitignore_global
git check-ignore -v <archivo> # Ver por qué archivo es ignorado

11 Comandos de Bajo Nivel (Plumbing)

Comandos internos de Git para operaciones avanzadas:

GUIA COMPLETA DE GIT Y GITHUB 21

11.1 Inspeccion de Objetos

git cat-file -p <hash>
git cat-file -t <hash>
git cat-file -s <hash>
git ls-tree <tree-hash>
git ls-files

git ls-files -s

git ls-remote <remote>

Ver contenido de objeto
Ver tipo de objeto

Ver tamafio de objeto
Listar contenido de tree
Listar archivos en index
Con informacidén detallada
Listar referencias remotas

H O H H H H H

11.2 Manipulacién del Index

git update-index --add <archivo> # Afladir al index

git update-index --remove <archivo> # (Quitar del index

git read-tree <tree> # Leer tree al index

git write-tree # Crear tree desde index

git show-ref # Mostrar todas las referencias

git update-ref refs/heads/main <commit> # Actualizar referencia
git symbolic-ref HEAD # Ver a qué apunta HEAD

git for-each-ref # Iterar sobre referencias

11.3 Objetos y Hashes

git hash-object <archivo> # Calcular hash de archivo
git hash-object -w <archivo> # Escribir objeto

git rev-parse HEAD # Convertir referencia a hash
git rev-list HEAD # Listar commits alcanzables

12 Hooks y Automatizacion
12.1 Git Hooks

Scripts que se ejecutan automéaticamente en eventos de Git.
Ubicacion: .git/hooks/

Hooks comunes:

Client-side:

* pre-commit: Antes de crear commit

* prepare-commit-msg: Antes de abrir editor de commit
e commit-msg: Validar mensaje de commit

* post-commit: Después de crear commit

* pre-push: Antes de hacer push

Server-side:

* pre-receive: Antes de aceptar push

GUIA COMPLETA DE GIT Y GITHUB

* update: Por cada rama actualizada
* post-receive: Después de aceptar push

Ejemplo pre-commit (tests):

#!/bin/sh
.git/hooks/pre-commit

npm test
if [$? -ne 0]; then
echo "Tests fallaron. Commit cancelado."

exit 1
fi
Ejemplo commit-msg (validar formato):
#!/bin/sh

.git/hooks/commit-msg

commit_msg=$(cat "$1")
pattern=""(feat|fix|docs|style|refactor|test|chore): .+"

if ! echo "$commit_msg" | grep -qE "$pattern"; then
echo "Error: El mensaje debe seguir el formato:"
echo "(feat|fix|docs|style|refactor|test|chore): descripcidn"
exit 1

fi

12.2 Aliases

Crear comandos personalizados:

Configurar aliases

git config --global alias.co checkout

git config --global alias.br branch

git config --global alias.ci commit

git config --global alias.st status

git config --global alias.unstage 'reset HEAD --'
git config --global alias.last 'log -1 HEAD'

22

git config --global alias.visual 'log --oneline --graph --all --decorate'

git config --global alias.amend 'commit --—-amend --no-edit'
Usar aliases
git co main

git visual

Aliases utiles:

GUIA COMPLETA DE GIT Y GITHUB 23

git config --global alias.lg "log --graph --pretty=format:'’%Cred}h’%Creset \
-%C(yellow) %d/%Creset %s %Cgreen(lcr) %C(bold blue)<¥%an>/Creset' --abbrev-commit"
git config --global alias.undo 'reset HEAD~1 --mixed'

git config --global alias.contributors 'shortlog -sn'

13 Troubleshooting
13.1 Problemas Comunes

Descartar todos los cambios locales:

git reset --hard HEAD
git clean -fd # Eliminar archivos untracked

Recuperar commit eliminado:

git reflog # Encontrar hash del commit
git checkout <hash>
git branch recovery <hash> # Crear rama desde commit

Cambiar dltimo commit:
git commit --amend # Modificar mensaje o afladir archivos

Mover commits a otra rama:

git checkout rama-correcta

git cherry-pick <commit>

git checkout rama-incorrecta

git reset --hard HEAD~1 # Eliminar de rama incorrecta

Dividir commit grande:

git reset HEAD~1 # Deshacer commit pero mantener cambios
git add <archivol>

git commit -m "Primera parte"

git add <archivo2>

git commit -m "Segunda parte"

Sincronizar fork con upstream:

git remote add upstream <url-original>
git fetch upstream

git checkout main

git merge upstream/main

git push origin main

Resolver ““detached HEAD’:

GUIA COMPLETA DE GIT Y GITHUB 24

git branch temp-branch # Crear rama desde HEAD actual
git checkout main
git merge temp-branch

Limpiar referencias obsoletas:

git remote prune origin # Eliminar referencias remotas obsoletas
git fetch --prune # Fetch y prune simultaneamente

Comprimir repositorio:

git gc # Garbage collection
git gc -—aggressive # Mas agresivo
git prune # Eliminar objetos inalcanzables

Ver archivos grandes:

git rev-list --objects --all \

git cat-file --batch-check='%(objecttype) %(objectname) %(objectsize) %(rest)' \
sed -n 's/"blob //p' \

sort —-—numeric-sort --key=2 \

tail -n 10

Eliminar archivo del historial:

git filter-branch --tree-filter 'rm -f archivo-sensible' HEAD
0 usar git-filter-repo (mads rapido)
git filter-repo —-path archivo-sensible --invert-paths

14 Referencia Rapida

14.1 Sintaxis de Referencias

HEAD # Commit actual
HEAD™ # Padre de HEAD (HEAD-~1)
HEAD™" # Abuelo de HEAD (HEAD~2)
HEAD~3 # 3 commits antes de HEAD
main~2 # Segundo padre de main (en merge)
<branch>@{yesterday} # Posicidén ayer
#

HEAD@{5} 5 movimientos atras en reflog

14.2 Especificar Rangos

<commitl>..<commit2> # Commits alcanzables desde commit2 pero no desde commitl
<commitl>...<commit2> # Commits alcanzables desde cualquiera pero no desde ambos
<branch>"@ # Todos los padres de branch

<commit>"! # E1 commit pero no sus padres

GUIA COMPLETA DE GIT Y GITHUB

14.3 Variables de Entorno

GIT_AUTHOR_NAME # Nombre del autor
GIT_AUTHOR_EMAIL # Email del autor
GIT_COMMITTER_NAME # Nombre del committer
GIT_COMMITTER_EMAIL # Email del committer
GIT_EDITOR # Editor predeterminado
GIT_PAGER # Pager para output
GIT_TRACE # Activar tracing

14.4 Configuracion Util

Colorear output
git config --global color.ui auto

Guardar credenciales
git config --global credential.helper cache
git config --global credential.helper 'cache --timeout=3600"

Autocorreccidén de comandos
git config --global help.autocorrect 10

Rebase por defecto al hacer pull
git config --global pull.rebase true

Prune automdtico
git config --global fetch.prune true

Diff mejorado
git config --global diff.algorithm histogram

Rerere (reuse recorded resolution)
git config --global rerere.enabled true

14.5 Comandos de Emergencia

Deshacer TODO y volver limpio
git reset --hard HEAD
git clean -fd

Recuperar trabajo después de reset --hard
git reflog
git reset --hard <hash>

Salir de cualquier operacidén en progreso
git merge --abort

25

GUIA COMPLETA DE GIT Y GITHUB

git rebase --abort
git cherry-pick --abort

Verificar integridad del repositorio
git fsck —-full

Reparar repositorio corrupto
git fsck —-full --no-dangling
git gc --aggressive --prune=now

14.6 Atajos de Teclado (Shell)

Afiadir a ~/ .bashrc o ~/.zshrc:

alias g='git'

alias gs='git status'

alias ga='git add'

alias gc='git commit'

alias gp='git push'

alias gl='git pull'

alias gd='git diff'

alias gco='git checkout'

alias gb='git branch'

alias glg='git log —--graph --oneline --all --decorate'

14.7 Formato de Commit Convencional
<tipo>(<ambito>): <descripcidén>
<cuerpo>
<pie>

Tipos:

e feat: Nueva funcionalidad

» fix: Correccion de bug

¢ docs: Documentacién

* style: Formato (no afecta c6digo)
e refactor: Refactorizacion

* test: Tests

e chore: Tareas de mantenimiento

» perf: Mejora de rendimiento

Ejemplo:
feat(auth): afladir autenticacién con OAuth2

Implementa login con Google y GitHub usando OAuth2.

GUIA COMPLETA DE GIT Y GITHUB 27

Incluye manejo de tokens y refresh automético.

Closes #123

15 Recursos Adicionales
15.1 Documentacion Oficial

* Manual de Git: man git o https://git-scm.com/docs
* Libro Pro Git: https://git-scm.com/book/es/v2
* Git Reference: https://git-scm.com/docs

15.2 Tutoriales y Cursos

* Learn Git Branching: https://learngitbranching.js.org
* Git Tutorial de Atlassian: https://www.atlassian.com/git/tutorials
* GitHub Learning Lab: https://lab.github.com

15.3 Herramientas

* GitKraken: Cliente visual multiplataforma

* SourceTree: Cliente visual de Atlassian

* Fork: Cliente Git para Mac y Windows

* lazygit: Cliente TUI (terminal) simple y potente
* tig: Navegador de texto para repositorios Git

154 Extensiones

* git-extras: Comandos ttiles adicionales

* git-flow: Extension para Git Flow workflow

* git-Ifs: Large File Storage

* git-filter-repo: Reescritura avanzada de historial

16 Glosario

Blob: Objeto que contiene el contenido de un archivo.

Branch (Rama): Puntero mévil a un commit que representa una linea de desarrollo.

Checkout: Cambiar el working directory a un commit, rama o tag especifico.

Clone: Crear una copia local de un repositorio remoto.

Commit: Instantdnea del proyecto en un momento especifico.

Conflict (Conflicto): Situacion donde Git no puede fusionar cambios automdticamente.

Detached HEAD: Estado donde HEAD apunta directamente a un commit en lugar de a
una rama.

Diff: Diferencias entre dos versiones de archivos.

Fast-forward: Tipo de merge donde simplemente se avanza el puntero de la rama.

Fetch: Descargar objetos y referencias desde un repositorio remoto sin fusionar.

Fork: Copia de un repositorio en tu propia cuenta.

HEAD: Referencia al commit actual.

Index: Area de staging donde se preparan cambios para el préximo commit.

Merge: Fusionar cambios de una rama a otra.

Origin: Nombre por defecto del repositorio remoto principal.

Pull: Fetch + Merge en un solo comando.

GUIA COMPLETA DE GIT Y GITHUB 28

to.

yecto.

cubre

Pull Request: Solicitud para fusionar cambios (terminologia de GitHub).

Push: Enviar commits locales a un repositorio remoto.

Rebase: Mover o combinar commits a una nueva base.

Remote: Repositorio alojado en otro lugar (servidor).

Repository (Repositorio): Colecciéon de commits, ramas y configuracién de un proyec-

SHA-1: Algoritmo hash usado para identificar objetos de Git.

Staging Area: Sinénimo de Index.

Stash: Guardar temporalmente cambios sin hacer commit.

Tag: Referencia permanente a un commit especifico.

Tree: Objeto que representa un directorio.

Upstream: Rama remota que una rama local rastrea.

Working Directory (Directorio de Trabajo): Directorio actual con archivos del pro-

17 Conclusion

Git es una herramienta poderosa y flexible que requiere practica para dominar. Esta guia
desde conceptos bdsicos hasta técnicas avanzadas, pero la mejor forma de aprender es

usdndolo en proyectos reales.

Nk L=

Consejos finales:

Practica regularmente

Experimenta en repositorios de prueba

Lee los mensajes de error (son informativos)

Usa git help <comando> cuando tengas dudas
No temas equivocarte (casi todo se puede deshacer)

Comandos méas importantes para recordar:

echo "# Léeme" >> README.md: Crea un archivo README.md con el texto “# Lée-
me”.

git init: Inicia un nuevo repositorio en el directorio actual.
git status - Siempre saber donde estés

git add - Preparar cambios

git commit -m "Primer commit" - Guardar cambios

git branch -M main: Muestra las ramas existentes.

git push -u origin main - Compartir cambios

git pull - Obtener cambios

git log - Ver historial de commits

git diff - Ver diferencias

git checkout [branch]: Cambia a una rama especifica.
git merge [branch]: Fusiona una rama con la actual.

18 Publicaciones Similares

Si te intereso este articulo, te recomendamos que explores otros blogs y recursos rela-

cionados que pueden ampliar tus conocimientos. Aqui te dejo algunas sugerencias:

1.

Y . .
IS Comandos De Informacion Windows

https://chaska-x.netlify.app/operating-system/2017-05-21-comandos-de-informacion-windows/index.pdf
https://chaska-x.netlify.app/operating-system/2017-05-21-comandos-de-informacion-windows

GUIA COMPLETA DE GIT Y GITHUB 29

B Adb
B Limpieza Y Optimizacion De Pc
B8 Usando Apk En Windown 11
IS Gestionar Versiones De Jdk En Kubuntu
E Instalar Tor Browser
IS Crear Enlaces Duros O Hard Link En Linux
IS Comandos Vim
9. I8 Guia De Git Y Github
10. 1§ 00 Primeros Pasos En Linux
11. [§01 Introduccion Linux
12. I§ 02 Distribuciones Linux
13. I§03 Instalacion Linux
14. B8 04 Administracion Particiones Volumenes
15. I Atajos De Teclado Y Comandos Para Usar Vim
16. I Instalando Specitify
17. I8 Gestiona Tus Dotfiles Con Gnu Stow

NN R WD

Esperamos que encuentres estas publicaciones igualmente interesantes y utiles. jDisfru-
ta de la lectura!

https://chaska-x.netlify.app/operating-system/2019-06-19-adb/index.pdf
https://chaska-x.netlify.app/operating-system/2019-06-19-adb
https://chaska-x.netlify.app/operating-system/2021-08-17-limpieza-y-optimizacion-de-pc/index.pdf
https://chaska-x.netlify.app/operating-system/2021-08-17-limpieza-y-optimizacion-de-pc
https://chaska-x.netlify.app/operating-system/2021-10-21-usando-apk-en-windown-11/index.pdf
https://chaska-x.netlify.app/operating-system/2021-10-21-usando-apk-en-windown-11
https://chaska-x.netlify.app/operating-system/2022-05-12-gestionar-versiones-de-jdk-en-kubuntu/index.pdf
https://chaska-x.netlify.app/operating-system/2022-05-12-gestionar-versiones-de-jdk-en-kubuntu
https://chaska-x.netlify.app/operating-system/2022-07-21-instalar-tor-browser/index.pdf
https://chaska-x.netlify.app/operating-system/2022-07-21-instalar-tor-browser
https://chaska-x.netlify.app/operating-system/2022-08-14-crear-enlaces-duros-o-hard-link-en-linux/index.pdf
https://chaska-x.netlify.app/operating-system/2022-08-14-crear-enlaces-duros-o-hard-link-en-linux
https://chaska-x.netlify.app/operating-system/2022-09-27-comandos-vim/index.pdf
https://chaska-x.netlify.app/operating-system/2022-09-27-comandos-vim
https://chaska-x.netlify.app/operating-system/2023-02-16-guia-de-git-y-github/index.pdf
https://chaska-x.netlify.app/operating-system/2023-02-16-guia-de-git-y-github
https://chaska-x.netlify.app/operating-system/2023-05-02-00-primeros-pasos-en-linux/index.pdf
https://chaska-x.netlify.app/operating-system/2023-05-02-00-primeros-pasos-en-linux
https://chaska-x.netlify.app/operating-system/2023-06-17-01-introduccion-linux/index.pdf
https://chaska-x.netlify.app/operating-system/2023-06-17-01-introduccion-linux
https://chaska-x.netlify.app/operating-system/2023-06-18-02-distribuciones-linux/index.pdf
https://chaska-x.netlify.app/operating-system/2023-06-18-02-distribuciones-linux
https://chaska-x.netlify.app/operating-system/2023-06-19-03-instalacion-linux/index.pdf
https://chaska-x.netlify.app/operating-system/2023-06-19-03-instalacion-linux
https://chaska-x.netlify.app/operating-system/2023-06-20-04-administracion-particiones-volumenes/index.pdf
https://chaska-x.netlify.app/operating-system/2023-06-20-04-administracion-particiones-volumenes
https://chaska-x.netlify.app/operating-system/2023-07-01-atajos-de-teclado-y-comandos-para-usar-vim/index.pdf
https://chaska-x.netlify.app/operating-system/2023-07-01-atajos-de-teclado-y-comandos-para-usar-vim
https://chaska-x.netlify.app/operating-system/2024-07-15-instalando-specitify/index.pdf
https://chaska-x.netlify.app/operating-system/2024-07-15-instalando-specitify
https://chaska-x.netlify.app/operating-system/2025-07-10-gestiona-tus-dotfiles-con-gnu-stow/index.pdf
https://chaska-x.netlify.app/operating-system/2025-07-10-gestiona-tus-dotfiles-con-gnu-stow

	Introduction
	Instalación y Configuración
	Instalación
	Método 1: Paquetes predeterminados (rápido y estable)
	Método 2: Desde la fuente (versión más reciente)

	Verificar Instalación
	Configuración Inicial
	Configuración de claves SSH para GitHub
	Generar una clave SSH
	Añadir la clave a ssh-agent
	Vincular la clave a GitHub

	Conceptos Fundamentales
	Objetos de Git
	Referencias Simbólicas
	Estados de Archivos
	SHA-1 y Hashes

	Comandos Básicos
	Crear e Inicializar Repositorios
	Estado y Diferencias
	Añadir Archivos (Staging)
	Commits
	Historial
	Deshacer Cambios
	Eliminar y Mover Archivos

	Branching y Merging
	Conceptos de Ramas
	Operaciones con Ramas
	Merging (Fusionar)
	Rebasing
	Cherry-pick

	Trabajo Remoto
	Repositorios Remotos
	Fetch, Pull y Push
	Tracking Branches

	Comandos Avanzados
	Stash (Guardar Temporalmente)
	Tags
	Buscar y Encontrar
	Reflog
	Worktrees
	Submodules
	Archivos y Bundles

	Resolución de Conflictos
	Identificar Conflictos
	Marcadores de Conflicto
	Resolver Conflictos

	Git Workflows
	Git Flow
	GitHub Flow
	Trunk-Based Development

	Ejemplos de uso diario de Git
	Flujo individual / Freelance / Proyectos personales
	Flujo típico de equipo mediano/pequeño con Pull Requests
	Corrección rápida de bug en producción
	Flujo cuando trabajas en varias tareas al mismo tiempo
	Mini-resumen de comandos que más se usan en la práctica diaria

	Mejores Prácticas
	Commits
	Branching
	Colaboración
	.gitignore

	Comandos de Bajo Nivel (Plumbing)
	Inspección de Objetos
	Manipulación del Index
	Objetos y Hashes

	Hooks y Automatización
	Git Hooks
	Aliases

	Troubleshooting
	Problemas Comunes

	Referencia Rápida
	Sintaxis de Referencias
	Especificar Rangos
	Variables de Entorno
	Configuración Útil
	Comandos de Emergencia
	Atajos de Teclado (Shell)
	Formato de Commit Convencional

	Recursos Adicionales
	Documentación Oficial
	Tutoriales y Cursos
	Herramientas
	Extensiones

	Glosario
	Conclusión
	Publicaciones Similares

