
Guía completa de Git y GitHub

Edison Achalma
Escuela Profesional de Economía, Universidad Nacional de San Cristóbal de Huamanga

Resumen
Esta guía completa de Git y GitHub ofrece una visión integral y actualizada
del sistema de control de versiones más utilizado en el desarrollo de soft-
ware. Desde los fundamentos teóricos (arquitectura, objetos y estados de
archivos) hasta comandos esenciales, flujos de trabajo diarios reales, resolu-
ción avanzada de conflictos, mejores prácticas modernas (incluyendo Con-
ventional Commits y trunk-based development) y ejemplos prácticos apli-
cados en 2025, este documento sirve como referencia exhaustiva tanto para
principiantes que dan sus primeros pasos como para desarrolladores interme-
dios que desean optimizar su flujo de trabajo diario en entornos individuales,
equipos pequeños y proyectos colaborativos en GitHub.

Palabras Claves: Git, GitHub, Control de versiones

Tabla de contenidos

Introduction 4

1 Instalación y Configuración 4
1.1 Instalación . 4

1.1.1 Método 1: Paquetes predeterminados (rápido y estable) 4
1.1.2 Método 2: Desde la fuente (versión más reciente) 4

1.2 Verificar Instalación . 5
1.3 Configuración Inicial . 5
1.4 Configuración de claves SSH para GitHub . 5

1.4.1 Generar una clave SSH . 5
1.4.2 Añadir la clave a ssh-agent . 6
1.4.3 Vincular la clave a GitHub . 6

2 Conceptos Fundamentales 6
2.1 Objetos de Git . 6
2.2 Referencias Simbólicas . 6

Edison Achalma https://orcid.org/0000-0001-6996-3364
El autor no tiene conflictos de interés que revelar. Los roles de autor se clasificaron utilizando la taxonomía de

roles de colaborador (CRediT; https://credit.niso.org/) de la siguiente manera: Edison Achalma: conceptualización,
redacción

La correspondencia relativa a este artículo debe dirigirse a Edison Achalma, Email: el-
mer.achalma.09@unsch.edu.pe

https://orcid.org/0000-0001-6996-3364
mailto:elmer.achalma.09@unsch.edu.pe
mailto:elmer.achalma.09@unsch.edu.pe

GUÍA COMPLETA DE GIT Y GITHUB 2

2.3 Estados de Archivos . 7
2.4 SHA-1 y Hashes . 7

3 Comandos Básicos 7
3.1 Crear e Inicializar Repositorios . 7
3.2 Estado y Diferencias . 7
3.3 Añadir Archivos (Staging) . 8
3.4 Commits . 8
3.5 Historial . 8
3.6 Deshacer Cambios . 9
3.7 Eliminar y Mover Archivos . 9

4 Branching y Merging 9
4.1 Conceptos de Ramas . 9
4.2 Operaciones con Ramas . 10
4.3 Merging (Fusionar) . 10
4.4 Rebasing . 10
4.5 Cherry-pick . 11

5 Trabajo Remoto 11
5.1 Repositorios Remotos . 11
5.2 Fetch, Pull y Push . 12
5.3 Tracking Branches . 12

6 Comandos Avanzados 12
6.1 Stash (Guardar Temporalmente) . 12
6.2 Tags . 13
6.3 Buscar y Encontrar . 13
6.4 Reflog . 14
6.5 Worktrees . 14
6.6 Submodules . 14
6.7 Archivos y Bundles . 14

7 Resolución de Conflictos 15
7.1 Identificar Conflictos . 15
7.2 Marcadores de Conflicto . 15
7.3 Resolver Conflictos . 15

8 Git Workflows 15
8.1 Git Flow . 15
8.2 GitHub Flow . 16
8.3 Trunk-Based Development . 16

9 Ejemplos de uso diario de Git 16
9.1 Flujo individual / Freelance / Proyectos personales 16
9.2 Flujo típico de equipo mediano/pequeño con Pull Requests 17
9.3 Corrección rápida de bug en producción . 18
9.4 Flujo cuando trabajas en varias tareas al mismo tiempo 18
9.5 Mini-resumen de comandos que más se usan en la práctica diaria 19

GUÍA COMPLETA DE GIT Y GITHUB 3

10 Mejores Prácticas 19
10.1 Commits . 19
10.2 Branching . 19
10.3 Colaboración . 20
10.4 .gitignore . 20

11 Comandos de Bajo Nivel (Plumbing) 20
11.1 Inspección de Objetos . 21
11.2 Manipulación del Index . 21
11.3 Objetos y Hashes . 21

12 Hooks y Automatización 21
12.1 Git Hooks . 21
12.2 Aliases . 22

13 Troubleshooting 23
13.1 Problemas Comunes . 23

14 Referencia Rápida 24
14.1 Sintaxis de Referencias . 24
14.2 Especificar Rangos . 24
14.3 Variables de Entorno . 25
14.4 Configuración Útil . 25
14.5 Comandos de Emergencia . 25
14.6 Atajos de Teclado (Shell) . 26
14.7 Formato de Commit Convencional . 26

15 Recursos Adicionales 27
15.1 Documentación Oficial . 27
15.2 Tutoriales y Cursos . 27
15.3 Herramientas . 27
15.4 Extensiones . 27

16 Glosario 27

17 Conclusión 28

18 Publicaciones Similares 28

GUÍA COMPLETA DE GIT Y GITHUB 4

Guía completa de Git y GitHub

Git es un sistema de control de versiones distribuido rápido, escalable y eficiente. Fue
creado por Linus Torvalds en 2005 para el desarrollo del kernel de Linux.

Características principales:

• Sistema distribuido (cada desarrollador tiene una copia completa del historial)
• Extremadamente rápido
• Soporte robusto para desarrollo no lineal (branching y merging)
• Integridad de datos garantizada mediante SHA-1

Arquitectura de Git
Git almacena los datos como instantáneas (snapshots) del proyecto completo, no como

diferencias entre archivos. Cada commit es una instantánea completa del estado del proyecto.
Tres áreas principales:

1. Working Directory: Tu directorio de trabajo actual
2. Staging Area (Index): Área de preparación para el próximo commit
3. Repository (.git directory): Base de datos de objetos y metadata

1 Instalación y Configuración

1.1 Instalación

1.1.1 Método 1: Paquetes predeterminados (rápido y estable)

Linux (Ubuntu/Debian):

sudo apt-get update
sudo apt-get install git

Linux (Fedora):

sudo dnf install git

macOS:

brew install git

Windows: Descargar desde: https://git-scm.com/download/win

1.1.2 Método 2: Desde la fuente (versión más reciente)

1. Instala las dependencias:

sudo apt update
sudo apt install libz-dev libssl-dev libcurl4-gnutls-dev \
libexpat1-dev gettext cmake gcc

2. Descarga y descomprime la versión deseada (ejemplo: 2.34.1):

GUÍA COMPLETA DE GIT Y GITHUB 5

mkdir tmp && cd tmp
curl -o git.tar.gz \
https://mirrors.edge.kernel.org/pub/software/scm/git/git-2.34.1.tar.gz
tar -zxf git.tar.gz
cd git-*

3. Compila e instala:

make prefix=/usr/local all
sudo make prefix=/usr/local install
exec bash

1.2 Verificar Instalación

git --version

1.3 Configuración Inicial

Configurar identidad (obligatorio):

git config --global user.name "Tu Nombre"
git config --global user.email "tu.email@ejemplo.com"

Editor por defecto:

git config --global core.editor "vim"
git config --global core.editor "nano"
git config --global core.editor "code --wait" # VS Code

Configurar rama principal:

git config --global init.defaultBranch main

Ver configuración:

git config --list
git config --list --show-origin # Ver de dónde viene cada configuración
git config user.name # Ver configuración específica

Niveles de configuración:

• --system: Para todos los usuarios del sistema (/etc/gitconfig)
• --global: Para tu usuario (~/.gitconfig)
• --local: Para el repositorio actual (.git/config) [predeterminado]

1.4 Configuración de claves SSH para GitHub

1.4.1 Generar una clave SSH

1. Verifica claves existentes:

GUÍA COMPLETA DE GIT Y GITHUB 6

ls -al ~/.ssh

Si no hay claves, crea el directorio: mkdir ~/.ssh.

2. Genera un par de claves:

ssh-keygen -t rsa -b 4096 -C "tu.email@example.com"

Acepta el nombre predeterminado y añade una contraseña (opcional).

1.4.2 Añadir la clave a ssh-agent

1. Inicia el agente:

eval "$(ssh-agent -s)"

2. Añade la clave privada:

ssh-add ~/.ssh/id_rsa

1.4.3 Vincular la clave a GitHub

1. Copia la clave pública:

• Linux/Mac: cat ~/.ssh/id_rsa.pub
• Windows: clip < ~/.ssh/id_rsa.pub

2. En GitHub, ve a Settings > SSH and GPG keys > New SSH key, pega la clave y guárdala.

3. Prueba la conexión:

ssh -T git@github.com

Resultado esperado: Hi tu_usuario! You've successfully authenticated...

2 Conceptos Fundamentales

2.1 Objetos de Git

Git maneja cuatro tipos de objetos:

1. Blob: Contenido de archivos
2. Tree: Estructura de directorios (apunta a blobs y otros trees)
3. Commit: Instantánea del proyecto (apunta a un tree y commits padres)
4. Tag: Referencia nombrada a un commit específico

2.2 Referencias Simbólicas

• HEAD: Apunta al commit actual (normalmente la punta de una rama)
• Rama (branch): Puntero móvil a un commit
• Tag: Puntero fijo a un commit
• Remote: Referencias a ramas en repositorios remotos

GUÍA COMPLETA DE GIT Y GITHUB 7

2.3 Estados de Archivos
1. Untracked: Archivos nuevos que Git no rastrea
2. Unmodified: Archivos rastreados sin cambios
3. Modified: Archivos rastreados con cambios
4. Staged: Archivos preparados para el próximo commit

2.4 SHA-1 y Hashes
Cada objeto en Git tiene un identificador único de 40 caracteres hexadecimales (hash

SHA-1). Puedes usar las primeras 7 caracteres para referencias cortas.

3 Comandos Básicos
3.1 Crear e Inicializar Repositorios

Crear nuevo repositorio:

git init
git init nombre-proyecto
git init --bare # Repositorio sin working directory (para servidores)

Clonar repositorio existente:

git clone <url>
git clone https://github.com/usuario/repositorio.git
git clone <url> <directorio-destino>

Solo las últimas n confirmaciones:

git clone --depth 1 <url> # Clone superficial (solo último commit)
git clone -b <rama> <url> # Clonar rama específica, o,
git clone --branch=nombre-rama <url>

3.2 Estado y Diferencias
Ver estado del repositorio:

git status
git status -s # Formato corto
git status --short # Formato abreviado
git status -b # Mostrar rama e información de tracking

Ver cambios:

git diff # Cambios no staged (no confirmados)
git diff --staged # Cambios staged
git diff --cached # Sinónimo de --staged
git diff HEAD # Todos los cambios desde último commit
git diff <rama1> <rama2> # Diferencias entre ramas
git diff <commit1> <commit2> # Diferencias entre commits
git diff --stat # Resumen estadístico
git diff --name-only # Solo nombres de archivos

GUÍA COMPLETA DE GIT Y GITHUB 8

3.3 Añadir Archivos (Staging)

git add <archivo> # Añadir archivo específico
git add . # Añadir todos los archivos del directorio actual
git add -A # Añadir todos los archivos del repositorio
git add *.js # Añadir por patrón
git add -p # Añadir interactivamente por fragmentos
git add -u # Añadir solo archivos ya rastreados modificados

3.4 Commits
Crear commit:

git commit -m "Mensaje del commit"
git commit -am "Mensaje" # Add + commit (solo tracked files)
git commit # Abre editor para mensaje largo
git commit --amend # Modificar último commit
git commit --amend -m "Nuevo mensaje" # Cambiar mensaje del último commit
git commit --amend --no-edit # Añadir cambios sin cambiar mensaje

Buenas prácticas para mensajes:
• Primera línea: resumen conciso (50 caracteres o menos)
• Línea en blanco
• Descripción detallada (72 caracteres por línea)
• Usar imperativo: “Añade” no “Añadido”

3.5 Historial
Ver historial:

git log
git log --oneline # Una línea por commit
git log --graph # Vista gráfica
git log --all # Todas las ramas
git log --decorate # Mostrar referencias (ramas, tags)
git log -p # Mostrar diferencias (patch)
git log -n 5 # Últimos 5 commits
git log --since="2 weeks" # Commits de las últimas 2 semanas
git log --author="Edison" # Commits de un autor
git log --grep="palabra" # Buscar en mensajes de commit
git log -- archivo.txt # Historial de un archivo
git log --follow archivo.txt # Incluir renombrados

Formatos personalizados:

git log --pretty=format:"%h - %an, %ar : %s"
git log --pretty=format:"%h %s" --graph
git log --graph --oneline --all --decorate
git config --global alias.tree "log --graph --decorate --all --oneline"
git tree

GUÍA COMPLETA DE GIT Y GITHUB 9

Placeholders útiles:

• %h: Hash abreviado
• %H: Hash completo
• %an: Nombre del autor
• %ae: Email del autor
• %ad: Fecha del autor
• %ar: Fecha relativa
• %s: Mensaje del commit

3.6 Deshacer Cambios

Descartar cambios en working directory:

git checkout -- <archivo> # Método antiguo
git restore <archivo> # Método moderno (Git 2.23+)
git restore . # Restaurar todos los archivos

Quitar archivos del staging area:

git reset HEAD <archivo> # Método antiguo
git restore --staged <archivo> # Método moderno
git reset HEAD # Quitar todos

Deshacer commits:

git reset --soft HEAD~1 # Mantiene cambios en staging
git reset --mixed HEAD~1 # Mantiene cambios en working directory [default]
git reset --hard HEAD~1 # CUIDADO: Elimina todo
git reset <commit> # Volver a un commit específico

Revertir commit (seguro):

git revert <commit> # Crea nuevo commit que deshace cambios
git revert HEAD # Revertir último commit
git revert --no-commit HEAD~3..HEAD # Revertir últimos 3 commits

3.7 Eliminar y Mover Archivos

git rm <archivo> # Eliminar archivo
git rm --cached <archivo> # Quitar del tracking pero mantener en disco
git rm -r directorio/ # Eliminar directorio recursivamente
git mv <origen> <destino> # Renombrar/mover archivo

4 Branching y Merging

4.1 Conceptos de Ramas

Una rama en Git es simplemente un puntero móvil a un commit. La rama por defecto se
llama main (anteriormente master).

GUÍA COMPLETA DE GIT Y GITHUB 10

4.2 Operaciones con Ramas

Crear ramas:

git branch <nombre-rama> # Crear rama
git checkout -b <nombre-rama> # Crear y cambiar
git switch -c <nombre-rama> # Método moderno (Git 2.23+)

Listar ramas:

git branch # Ramas locales
git branch -a # Todas las ramas (locales + remotas)
git branch -r # Solo ramas remotas
git branch -v # Con último commit de cada rama
git branch --merged # Ramas fusionadas con la actual
git branch --no-merged # Ramas no fusionadas

Cambiar de rama:

git checkout <rama> # Método antiguo
git switch <rama> # Método moderno (Git 2.23+)
git checkout - # Volver a rama anterior

Eliminar ramas:

git branch -d <rama> # Eliminar rama fusionada
git branch -D <rama> # Forzar eliminación
git push origin --delete <rama> # Eliminar rama remota

Renombrar rama:

git branch -m <nuevo-nombre> # Renombrar rama actual
git branch -m <viejo> <nuevo> # Renombrar otra rama

4.3 Merging (Fusionar)

Merge básico:

git merge <rama> # Fusionar rama en la actual
git merge --no-ff <rama> # Forzar commit de merge
git merge --squash <rama> # Fusionar como un solo commit
git merge --abort # Cancelar merge en conflicto

Tipos de merge:

1. Fast-forward: Avance directo sin commit de merge
2. Three-way merge: Crea commit de merge con dos padres
3. Squash merge: Combina todos los commits en uno

4.4 Rebasing

Rebase reescribe el historial moviendo commits a una nueva base.

GUÍA COMPLETA DE GIT Y GITHUB 11

git rebase <rama-base> # Rebasar rama actual
git rebase main # Rebasar sobre main
git rebase -i HEAD~3 # Rebase interactivo (últimos 3 commits)
git rebase --continue # Continuar después de resolver conflictos
git rebase --abort # Cancelar rebase
git rebase --skip # Saltar commit actual

Rebase interactivo - comandos:

• pick: Usar commit
• reword: Cambiar mensaje
• edit: Editar commit
• squash: Fusionar con commit anterior
• fixup: Como squash pero descarta mensaje
• drop: Eliminar commit

� REGLA DE ORO: Nunca hagas rebase de commits públicos/compartidos

4.5 Cherry-pick

Aplicar commits específicos de una rama a otra:

git cherry-pick <commit> # Aplicar un commit
git cherry-pick <commit1> <commit2> # Varios commits
git cherry-pick <commit1>..<commit2> # Rango de commits
git cherry-pick --continue # Continuar después de conflictos
git cherry-pick --abort # Cancelar

5 Trabajo Remoto

5.1 Repositorios Remotos

Ver remotos:

git remote # Listar remotos
git remote -v # Con URLs
git remote show origin # Información detallada

Añadir remotos:

git remote add <nombre> <url>
git remote add origin https://github.com/usuario/repo.git

Modificar remotos:

git remote rename <viejo> <nuevo>
git remote remove <nombre>
git remote set-url origin <nueva-url>

GUÍA COMPLETA DE GIT Y GITHUB 12

5.2 Fetch, Pull y Push

Fetch (descargar sin fusionar):

git fetch # Fetch de origin
git fetch origin # Fetch de origin explícitamente
git fetch --all # Fetch de todos los remotos
git fetch origin <rama> # Fetch de rama específica

Pull (fetch + merge):

git pull # Pull de rama actual
git pull origin main # Pull de rama específica
git pull --rebase # Pull con rebase en lugar de merge
git pull --rebase origin main

Push (enviar cambios):

git push # Push de rama actual
git push origin main # Push a rama específica
git push -u origin main # Push y establecer upstream
git push --all # Push de todas las ramas
git push --tags # Push de todos los tags
git push origin --delete <rama> # Eliminar rama remota
git push --force # � Forzar push (PELIGROSO)
git push --force-with-lease # Forzar pero más seguro

5.3 Tracking Branches

git branch -u origin/main # Establecer upstream de rama actual
git branch --set-upstream-to=origin/main
git branch -vv # Ver tracking branches

6 Comandos Avanzados

6.1 Stash (Guardar Temporalmente)

Guardar cambios sin hacer commit:

git stash # Guardar cambios
git stash save "mensaje" # Con mensaje descriptivo
git stash -u # Incluir archivos untracked
git stash --all # Incluir todo (untracked + ignored)
git stash list # Listar stashes
git stash show # Ver cambios del último stash
git stash show -p # Ver diff completo
git stash apply # Aplicar último stash (lo mantiene)
git stash pop # Aplicar y eliminar último stash

GUÍA COMPLETA DE GIT Y GITHUB 13

git stash apply stash@{2} # Aplicar stash específico
git stash drop stash@{0} # Eliminar stash específico
git stash clear # Eliminar todos los stashes
git stash branch <rama> # Crear rama desde stash

6.2 Tags

Marcar puntos importantes en el historial:
Tags ligeros:

git tag v1.0 # Tag ligero
git tag v1.0 <commit> # Tag en commit específico

Tags anotados (recomendado):

git tag -a v1.0 -m "Versión 1.0"
git tag -a v1.0 <commit> -m "mensaje"

Operaciones con tags:

git tag # Listar tags
git tag -l "v1.8.*" # Listar con patrón
git show v1.0 # Ver información del tag
git push origin v1.0 # Push de tag específico
git push origin --tags # Push de todos los tags
git tag -d v1.0 # Eliminar tag local
git push origin --delete v1.0 # Eliminar tag remoto
git checkout v1.0 # Checkout a tag (detached HEAD)

6.3 Buscar y Encontrar

Grep (buscar en archivos):

git grep "texto" # Buscar en working directory
git grep "texto" <commit> # Buscar en commit específico
git grep -n "texto" # Con números de línea
git grep --count "texto" # Contar coincidencias
git grep -i "texto" # Case insensitive

Bisect (búsqueda binaria de bugs):

git bisect start # Iniciar bisect
git bisect bad # Marcar commit actual como malo
git bisect good <commit> # Marcar commit bueno conocido
Git checkout commits intermedios automáticamente
git bisect good # Marcar como bueno
git bisect bad # Marcar como malo
git bisect reset # Terminar bisect

GUÍA COMPLETA DE GIT Y GITHUB 14

Blame (ver quién modificó cada línea):

git blame <archivo> # Ver autor de cada línea
git blame -L 10,20 <archivo> # Solo líneas 10-20
git blame -e <archivo> # Mostrar emails
git blame -w <archivo> # Ignorar cambios de whitespace

6.4 Reflog

Registro de todos los cambios a HEAD (incluso commits “perdidos”):

git reflog # Ver reflog
git reflog show # Igual que git reflog
git reflog --all # Reflog de todas las referencias
git reset --hard HEAD@{2} # Volver a estado anterior

6.5 Worktrees

Tener múltiples working directories del mismo repositorio:

git worktree add <path> <branch> # Crear worktree
git worktree list # Listar worktrees
git worktree remove <path> # Eliminar worktree
git worktree prune # Limpiar worktrees obsoletos

6.6 Submodules

Incluir repositorios dentro de repositorios:

git submodule add <url> <path> # Añadir submodule
git submodule init # Inicializar submodules
git submodule update # Actualizar submodules
git submodule update --init --recursive # Init + update recursivo
git clone --recurse-submodules <url> # Clonar con submodules

6.7 Archivos y Bundles

Archive (crear archivo del repositorio):

git archive --format=zip --output=proyecto.zip HEAD
git archive --format=tar.gz --output=proyecto.tar.gz main

Bundle (repositorio portátil):

git bundle create repo.bundle HEAD --all
git clone repo.bundle repo-clonado
git bundle verify repo.bundle

GUÍA COMPLETA DE GIT Y GITHUB 15

7 Resolución de Conflictos

7.1 Identificar Conflictos

Cuando hay conflictos durante merge o rebase:

git status # Ver archivos con conflictos
git diff # Ver conflictos
git diff --ours # Ver nuestra versión
git diff --theirs # Ver su versión

7.2 Marcadores de Conflicto

<<<<<<< HEAD
Tu versión del código
=======
Su versión del código
>>>>>>> rama-a-fusionar

7.3 Resolver Conflictos

Manualmente:

1. Editar archivos para resolver conflictos
2. Eliminar marcadores <<<<<<<, =======, >>>>>>>
3. git add <archivo> para marcar como resuelto
4. git commit o git rebase --continue

Con herramientas:

git mergetool # Abrir herramienta de merge
git mergetool --tool=vimdiff
git config --global merge.tool meld # Configurar herramienta

Estrategias:

git merge -X ours <rama> # Preferir nuestra versión
git merge -X theirs <rama> # Preferir su versión
git checkout --ours <archivo> # Tomar nuestra versión
git checkout --theirs <archivo> # Tomar su versión

8 Git Workflows

8.1 Git Flow

Modelo de branching con ramas específicas:

• main: Código de producción
• develop: Rama de desarrollo
• feature/*: Nuevas características
• release/*: Preparación de releases

GUÍA COMPLETA DE GIT Y GITHUB 16

• hotfix/*: Correcciones urgentes

Comandos (con extensión git-flow):

git flow init
git flow feature start nueva-caracteristica
git flow feature finish nueva-caracteristica
git flow release start 1.0.0
git flow release finish 1.0.0
git flow hotfix start fix-critico
git flow hotfix finish fix-critico

8.2 GitHub Flow

Workflow más simple:

1. Crear rama desde main
2. Hacer commits
3. Abrir Pull Request
4. Revisión de código
5. Merge a main
6. Deploy automático

8.3 Trunk-Based Development

• Una rama principal (main o trunk)
• Commits frecuentes y pequeños
• Feature flags para ocultar trabajo en progreso
• CI/CD robusto

9 Ejemplos de uso diario de Git

Flujos de trabajo más comunes que uso todos los días en diferentes tipos de proyectos
y entornos (individuales, equipos pequeños, medianos y open-source).

9.1 Flujo individual / Freelance / Proyectos personales

Al empezar el día
git pull origin main # Siempre sincronizo primero
git status # Muestra el estado actual del repositorio.

Trabajo en una nueva funcionalidad
git switch -c feat/login-social # Creo rama con convención clara

... desarrollo varias horas ...
git add .
git commit -m "feat: implementar login con Google y GitHub"

Pequeña corrección rápida

GUÍA COMPLETA DE GIT Y GITHUB 17

git add src/components/LoginForm.tsx
git commit -m "fix: corregir validación de email en formulario"

Al final del día o antes de push
git branch -M main # Muestra las ramas existentes.
git switch main
git pull # Vuelvo a sincronizar por si alguien más empujó
git switch feat/login-social
git rebase main # Mantengo mi rama actualizada (rebase limpio)
git switch main
git merge --ff-only feat/login-social # Fast-forward si es posible
git push -u origin main # Envía los cambios al repositorio remoto.
git branch -d feat/login-social # Elimino la rama ya que está integrada

Opcional: commit squash al final (muy común en proyectos pequeños)
git merge --squash feat/login-social
git commit -m "feat: login con proveedores sociales + validaciones"
git push

Ventajas: Muy rápido, historial relativamente limpio, poco overhead.

9.2 Flujo típico de equipo mediano/pequeño con Pull Requests

Inicio de jornada / después de stand-up
git fetch --prune # Limpio referencias remotas obsoletas
git switch main
git pull

Nueva tarea (ej: ticket #456 - mejorar rendimiento de dashboard)
git switch -c feature/456-dashboard-perf

Desarrollo normal (varios commits)
git commit -m "feat(dashboard): lazy loading de gráficos pesados"
git commit -m "refactor: extraer hook useChartData"

Antes de terminar el día
git rebase -i origin/main # O rebase main si ya está actualizado
Squash/reword si quiero limpiar commits antes de PR

Subo y creo Pull Request
git push -u origin feature/456-dashboard-perf

En GitHub/GitLab:
→ Creo PR → añado reviewers → espero revisión
→ Después de aprobar y pasar CI/CD:
Merge squash / merge commit /
rebase & merge (depende de la política del equipo)

GUÍA COMPLETA DE GIT Y GITHUB 18

Una vez mergeado (normalmente por el reviewer o bot)
git switch main
git pull
git fetch --prune
git branch -d feature/456-dashboard-perf # Limpio localmente

Variante muy común en 2025:
Merge squash → un solo commit limpio en main con el título del PR

9.3 Corrección rápida de bug en producción

Opción más rápida y segura (recomendada)
git switch main
git pull
git switch -c hotfix/789-boton-pago-falla

Arreglo rápido (1-3 commits)
git commit -m "fix: corregir validación de tarjeta en checkout"

git push -u origin hotfix/789-boton-pago-falla

→ Crear PR rápido hacia main
→ Revisión exprés (o auto-merge si es crítico)
→ Merge (preferiblemente squash o rebase)

Después del deploy
git switch main
git pull
git tag hotfix-2025-12-30-boton-pago # O v1.2.3-hotfix si usas semver
git push --tags

9.4 Flujo cuando trabajas en varias tareas al mismo tiempo

Estoy en medio de feature/cuenta-premium
git status

→ Aparece bug urgente
git stash push -m "WIP premium checkout"

Arreglo rápido
git switch -c hotfix/791-api-timeout
... fix ...
git commit -m "fix: aumentar timeout en llamada a /reports"
git push -u origin hotfix/791-api-timeout
→ PR rápido → merge

GUÍA COMPLETA DE GIT Y GITHUB 19

Vuelvo a lo mío
git switch feature/cuenta-premium
git stash pop
Continúo donde estaba...

9.5 Mini-resumen de comandos que más se usan en la práctica diaria

Acción Comando más común en 2025 Frecuencia

Sincronizar al empezar git pull / git fetch --prune && git
pull

�����

Crear rama de tarea git switch -c
feat/ticket-xxx-nombre

�����

Commit atómico git commit -m "tipo: descripción
corta"

�����

Actualizar rama antes de PR git rebase main o git merge main ����
Subir rama nueva git push -u origin nombre-rama ����
Limpiar después de merge git branch -d rama-antigua ����
Guardar trabajo temporal git stash push -m "..." / git stash

pop
���

Ver estado rápido git status -sb o alias gs �����
Historial bonito git log --oneline --graph

--decorate --all
����

Comparar con main git diff main... ���

Recomendación final para tu día a día
Adopta el hábito de:

1. Siempre pull al empezar
2. Trabajar en ramas cortas y con nombres claros
3. Commits pequeños y descriptivos (convención Conventional Commits es la más usada

actualmente)
4. Actualizar tu rama frecuentemente (rebase o merge main)
5. Eliminar ramas una vez integradas

10 Mejores Prácticas

10.1 Commits

1. Commits atómicos: Un commit = un cambio lógico
2. Mensajes descriptivos: Explica el “qué” y el “por qué”
3. Commits frecuentes: Mejor muchos commits pequeños que pocos grandes
4. No commitear archivos generados: Usar .gitignore
5. Revisar antes de commitear: git diff --staged

10.2 Branching

1. Nombres descriptivos: feature/nueva-funcionalidad, bugfix/issue-123
2. Ramas de vida corta: Fusionar frecuentemente

GUÍA COMPLETA DE GIT Y GITHUB 20

3. Mantener ramas actualizadas: Hacer merge/rebase regular de main
4. Eliminar ramas fusionadas: Mantener repositorio limpio
5. Proteger rama principal: Requerir pull requests y revisiones

10.3 Colaboración

1. Pull antes de push: Evitar conflictos
2. Revisar código: Pull requests con revisiones
3. No reescribir historial público: Evitar rebase/amend de commits pusheados
4. Comunicación: Documentar decisiones importantes
5. CI/CD: Automatizar tests y despliegues

10.4 .gitignore

Ejemplos comunes:

Node.js
node_modules/
npm-debug.log
.env

Python
__pycache__/
*.py[cod]
venv/
.pytest_cache/

IDE
.vscode/
.idea/
*.swp

OS
.DS_Store
Thumbs.db

Build
dist/
build/
*.log

Comandos útiles:

git config --global core.excludesfile ~/.gitignore_global
git check-ignore -v <archivo> # Ver por qué archivo es ignorado

11 Comandos de Bajo Nivel (Plumbing)

Comandos internos de Git para operaciones avanzadas:

GUÍA COMPLETA DE GIT Y GITHUB 21

11.1 Inspección de Objetos

git cat-file -p <hash> # Ver contenido de objeto
git cat-file -t <hash> # Ver tipo de objeto
git cat-file -s <hash> # Ver tamaño de objeto
git ls-tree <tree-hash> # Listar contenido de tree
git ls-files # Listar archivos en index
git ls-files -s # Con información detallada
git ls-remote <remote> # Listar referencias remotas

11.2 Manipulación del Index

git update-index --add <archivo> # Añadir al index
git update-index --remove <archivo> # Quitar del index
git read-tree <tree> # Leer tree al index
git write-tree # Crear tree desde index

git show-ref # Mostrar todas las referencias
git update-ref refs/heads/main <commit> # Actualizar referencia
git symbolic-ref HEAD # Ver a qué apunta HEAD
git for-each-ref # Iterar sobre referencias

11.3 Objetos y Hashes

git hash-object <archivo> # Calcular hash de archivo
git hash-object -w <archivo> # Escribir objeto
git rev-parse HEAD # Convertir referencia a hash
git rev-list HEAD # Listar commits alcanzables

12 Hooks y Automatización

12.1 Git Hooks

Scripts que se ejecutan automáticamente en eventos de Git.
Ubicación: .git/hooks/
Hooks comunes:
Client-side:

• pre-commit: Antes de crear commit
• prepare-commit-msg: Antes de abrir editor de commit
• commit-msg: Validar mensaje de commit
• post-commit: Después de crear commit
• pre-push: Antes de hacer push

Server-side:

• pre-receive: Antes de aceptar push

GUÍA COMPLETA DE GIT Y GITHUB 22

• update: Por cada rama actualizada
• post-receive: Después de aceptar push

Ejemplo pre-commit (tests):

#!/bin/sh
.git/hooks/pre-commit

npm test
if [$? -ne 0]; then

echo "Tests fallaron. Commit cancelado."
exit 1

fi

Ejemplo commit-msg (validar formato):

#!/bin/sh
.git/hooks/commit-msg

commit_msg=$(cat "$1")
pattern="^(feat|fix|docs|style|refactor|test|chore): .+"

if ! echo "$commit_msg" | grep -qE "$pattern"; then
echo "Error: El mensaje debe seguir el formato:"
echo "(feat|fix|docs|style|refactor|test|chore): descripción"
exit 1

fi

12.2 Aliases

Crear comandos personalizados:

Configurar aliases
git config --global alias.co checkout
git config --global alias.br branch
git config --global alias.ci commit
git config --global alias.st status
git config --global alias.unstage 'reset HEAD --'
git config --global alias.last 'log -1 HEAD'
git config --global alias.visual 'log --oneline --graph --all --decorate'
git config --global alias.amend 'commit --amend --no-edit'

Usar aliases
git co main
git visual

Aliases útiles:

GUÍA COMPLETA DE GIT Y GITHUB 23

git config --global alias.lg "log --graph --pretty=format:'%Cred%h%Creset \
-%C(yellow)%d%Creset %s %Cgreen(%cr) %C(bold blue)<%an>%Creset' --abbrev-commit"
git config --global alias.undo 'reset HEAD~1 --mixed'
git config --global alias.contributors 'shortlog -sn'

13 Troubleshooting

13.1 Problemas Comunes

Descartar todos los cambios locales:

git reset --hard HEAD
git clean -fd # Eliminar archivos untracked

Recuperar commit eliminado:

git reflog # Encontrar hash del commit
git checkout <hash>
git branch recovery <hash> # Crear rama desde commit

Cambiar último commit:

git commit --amend # Modificar mensaje o añadir archivos

Mover commits a otra rama:

git checkout rama-correcta
git cherry-pick <commit>
git checkout rama-incorrecta
git reset --hard HEAD~1 # Eliminar de rama incorrecta

Dividir commit grande:

git reset HEAD~1 # Deshacer commit pero mantener cambios
git add <archivo1>
git commit -m "Primera parte"
git add <archivo2>
git commit -m "Segunda parte"

Sincronizar fork con upstream:

git remote add upstream <url-original>
git fetch upstream
git checkout main
git merge upstream/main
git push origin main

Resolver “detached HEAD”:

GUÍA COMPLETA DE GIT Y GITHUB 24

git branch temp-branch # Crear rama desde HEAD actual
git checkout main
git merge temp-branch

Limpiar referencias obsoletas:

git remote prune origin # Eliminar referencias remotas obsoletas
git fetch --prune # Fetch y prune simultáneamente

Comprimir repositorio:

git gc # Garbage collection
git gc --aggressive # Más agresivo
git prune # Eliminar objetos inalcanzables

Ver archivos grandes:

git rev-list --objects --all \
| git cat-file --batch-check='%(objecttype) %(objectname) %(objectsize) %(rest)' \
| sed -n 's/^blob //p' \
| sort --numeric-sort --key=2 \
| tail -n 10

Eliminar archivo del historial:

git filter-branch --tree-filter 'rm -f archivo-sensible' HEAD
O usar git-filter-repo (más rápido)
git filter-repo --path archivo-sensible --invert-paths

14 Referencia Rápida

14.1 Sintaxis de Referencias

HEAD # Commit actual
HEAD^ # Padre de HEAD (HEAD~1)
HEAD^^ # Abuelo de HEAD (HEAD~2)
HEAD~3 # 3 commits antes de HEAD
main^2 # Segundo padre de main (en merge)
<branch>@{yesterday} # Posición ayer
HEAD@{5} # 5 movimientos atrás en reflog

14.2 Especificar Rangos

<commit1>..<commit2> # Commits alcanzables desde commit2 pero no desde commit1
<commit1>...<commit2> # Commits alcanzables desde cualquiera pero no desde ambos
<branch>^@ # Todos los padres de branch
<commit>^! # El commit pero no sus padres

GUÍA COMPLETA DE GIT Y GITHUB 25

14.3 Variables de Entorno

GIT_AUTHOR_NAME # Nombre del autor
GIT_AUTHOR_EMAIL # Email del autor
GIT_COMMITTER_NAME # Nombre del committer
GIT_COMMITTER_EMAIL # Email del committer
GIT_EDITOR # Editor predeterminado
GIT_PAGER # Pager para output
GIT_TRACE # Activar tracing

14.4 Configuración Útil

Colorear output
git config --global color.ui auto

Guardar credenciales
git config --global credential.helper cache
git config --global credential.helper 'cache --timeout=3600'

Autocorrección de comandos
git config --global help.autocorrect 10

Rebase por defecto al hacer pull
git config --global pull.rebase true

Prune automático
git config --global fetch.prune true

Diff mejorado
git config --global diff.algorithm histogram

Rerere (reuse recorded resolution)
git config --global rerere.enabled true

14.5 Comandos de Emergencia

Deshacer TODO y volver limpio
git reset --hard HEAD
git clean -fd

Recuperar trabajo después de reset --hard
git reflog
git reset --hard <hash>

Salir de cualquier operación en progreso
git merge --abort

GUÍA COMPLETA DE GIT Y GITHUB 26

git rebase --abort
git cherry-pick --abort

Verificar integridad del repositorio
git fsck --full

Reparar repositorio corrupto
git fsck --full --no-dangling
git gc --aggressive --prune=now

14.6 Atajos de Teclado (Shell)

Añadir a ~/.bashrc o ~/.zshrc:

alias g='git'
alias gs='git status'
alias ga='git add'
alias gc='git commit'
alias gp='git push'
alias gl='git pull'
alias gd='git diff'
alias gco='git checkout'
alias gb='git branch'
alias glg='git log --graph --oneline --all --decorate'

14.7 Formato de Commit Convencional

<tipo>(<ámbito>): <descripción>

<cuerpo>

<pie>

Tipos:

• feat: Nueva funcionalidad
• fix: Corrección de bug
• docs: Documentación
• style: Formato (no afecta código)
• refactor: Refactorización
• test: Tests
• chore: Tareas de mantenimiento
• perf: Mejora de rendimiento

Ejemplo:

feat(auth): añadir autenticación con OAuth2

Implementa login con Google y GitHub usando OAuth2.

GUÍA COMPLETA DE GIT Y GITHUB 27

Incluye manejo de tokens y refresh automático.

Closes #123

15 Recursos Adicionales

15.1 Documentación Oficial

• Manual de Git: man git o https://git-scm.com/docs
• Libro Pro Git: https://git-scm.com/book/es/v2
• Git Reference: https://git-scm.com/docs

15.2 Tutoriales y Cursos

• Learn Git Branching: https://learngitbranching.js.org
• Git Tutorial de Atlassian: https://www.atlassian.com/git/tutorials
• GitHub Learning Lab: https://lab.github.com

15.3 Herramientas

• GitKraken: Cliente visual multiplataforma
• SourceTree: Cliente visual de Atlassian
• Fork: Cliente Git para Mac y Windows
• lazygit: Cliente TUI (terminal) simple y potente
• tig: Navegador de texto para repositorios Git

15.4 Extensiones

• git-extras: Comandos útiles adicionales
• git-flow: Extensión para Git Flow workflow
• git-lfs: Large File Storage
• git-filter-repo: Reescritura avanzada de historial

16 Glosario

Blob: Objeto que contiene el contenido de un archivo.
Branch (Rama): Puntero móvil a un commit que representa una línea de desarrollo.
Checkout: Cambiar el working directory a un commit, rama o tag específico.
Clone: Crear una copia local de un repositorio remoto.
Commit: Instantánea del proyecto en un momento específico.
Conflict (Conflicto): Situación donde Git no puede fusionar cambios automáticamente.
Detached HEAD: Estado donde HEAD apunta directamente a un commit en lugar de a

una rama.
Diff: Diferencias entre dos versiones de archivos.
Fast-forward: Tipo de merge donde simplemente se avanza el puntero de la rama.
Fetch: Descargar objetos y referencias desde un repositorio remoto sin fusionar.
Fork: Copia de un repositorio en tu propia cuenta.
HEAD: Referencia al commit actual.
Index: Área de staging donde se preparan cambios para el próximo commit.
Merge: Fusionar cambios de una rama a otra.
Origin: Nombre por defecto del repositorio remoto principal.
Pull: Fetch + Merge en un solo comando.

GUÍA COMPLETA DE GIT Y GITHUB 28

Pull Request: Solicitud para fusionar cambios (terminología de GitHub).
Push: Enviar commits locales a un repositorio remoto.
Rebase: Mover o combinar commits a una nueva base.
Remote: Repositorio alojado en otro lugar (servidor).
Repository (Repositorio): Colección de commits, ramas y configuración de un proyec-

to.
SHA-1: Algoritmo hash usado para identificar objetos de Git.
Staging Area: Sinónimo de Index.
Stash: Guardar temporalmente cambios sin hacer commit.
Tag: Referencia permanente a un commit específico.
Tree: Objeto que representa un directorio.
Upstream: Rama remota que una rama local rastrea.
Working Directory (Directorio de Trabajo): Directorio actual con archivos del pro-

yecto.

17 Conclusión

Git es una herramienta poderosa y flexible que requiere práctica para dominar. Esta guía
cubre desde conceptos básicos hasta técnicas avanzadas, pero la mejor forma de aprender es
usándolo en proyectos reales.

Consejos finales:

1. Practica regularmente
2. Experimenta en repositorios de prueba
3. Lee los mensajes de error (son informativos)
4. Usa git help <comando> cuando tengas dudas
5. No temas equivocarte (casi todo se puede deshacer)

Comandos más importantes para recordar:

• echo "# Léeme" >> README.md: Crea un archivo README.md con el texto “# Lée-
me”.

• git init: Inicia un nuevo repositorio en el directorio actual.
• git status - Siempre saber dónde estás
• git add - Preparar cambios
• git commit -m "Primer commit" - Guardar cambios
• git branch -M main: Muestra las ramas existentes.
• git push -u origin main - Compartir cambios
• git pull - Obtener cambios
• git log - Ver historial de commits
• git diff - Ver diferencias
• git checkout [branch]: Cambia a una rama específica.
• git merge [branch]: Fusiona una rama con la actual.

18 Publicaciones Similares

Si te interesó este artículo, te recomendamos que explores otros blogs y recursos rela-
cionados que pueden ampliar tus conocimientos. Aquí te dejo algunas sugerencias:

1. Comandos De Informacion Windows

https://chaska-x.netlify.app/operating-system/2017-05-21-comandos-de-informacion-windows/index.pdf
https://chaska-x.netlify.app/operating-system/2017-05-21-comandos-de-informacion-windows

GUÍA COMPLETA DE GIT Y GITHUB 29

2. Adb
3. Limpieza Y Optimizacion De Pc
4. Usando Apk En Windown 11
5. Gestionar Versiones De Jdk En Kubuntu
6. Instalar Tor Browser
7. Crear Enlaces Duros O Hard Link En Linux
8. Comandos Vim
9. Guia De Git Y Github

10. 00 Primeros Pasos En Linux
11. 01 Introduccion Linux
12. 02 Distribuciones Linux
13. 03 Instalacion Linux
14. 04 Administracion Particiones Volumenes
15. Atajos De Teclado Y Comandos Para Usar Vim
16. Instalando Specitify
17. Gestiona Tus Dotfiles Con Gnu Stow

Esperamos que encuentres estas publicaciones igualmente interesantes y útiles. ¡Disfru-
ta de la lectura!

https://chaska-x.netlify.app/operating-system/2019-06-19-adb/index.pdf
https://chaska-x.netlify.app/operating-system/2019-06-19-adb
https://chaska-x.netlify.app/operating-system/2021-08-17-limpieza-y-optimizacion-de-pc/index.pdf
https://chaska-x.netlify.app/operating-system/2021-08-17-limpieza-y-optimizacion-de-pc
https://chaska-x.netlify.app/operating-system/2021-10-21-usando-apk-en-windown-11/index.pdf
https://chaska-x.netlify.app/operating-system/2021-10-21-usando-apk-en-windown-11
https://chaska-x.netlify.app/operating-system/2022-05-12-gestionar-versiones-de-jdk-en-kubuntu/index.pdf
https://chaska-x.netlify.app/operating-system/2022-05-12-gestionar-versiones-de-jdk-en-kubuntu
https://chaska-x.netlify.app/operating-system/2022-07-21-instalar-tor-browser/index.pdf
https://chaska-x.netlify.app/operating-system/2022-07-21-instalar-tor-browser
https://chaska-x.netlify.app/operating-system/2022-08-14-crear-enlaces-duros-o-hard-link-en-linux/index.pdf
https://chaska-x.netlify.app/operating-system/2022-08-14-crear-enlaces-duros-o-hard-link-en-linux
https://chaska-x.netlify.app/operating-system/2022-09-27-comandos-vim/index.pdf
https://chaska-x.netlify.app/operating-system/2022-09-27-comandos-vim
https://chaska-x.netlify.app/operating-system/2023-02-16-guia-de-git-y-github/index.pdf
https://chaska-x.netlify.app/operating-system/2023-02-16-guia-de-git-y-github
https://chaska-x.netlify.app/operating-system/2023-05-02-00-primeros-pasos-en-linux/index.pdf
https://chaska-x.netlify.app/operating-system/2023-05-02-00-primeros-pasos-en-linux
https://chaska-x.netlify.app/operating-system/2023-06-17-01-introduccion-linux/index.pdf
https://chaska-x.netlify.app/operating-system/2023-06-17-01-introduccion-linux
https://chaska-x.netlify.app/operating-system/2023-06-18-02-distribuciones-linux/index.pdf
https://chaska-x.netlify.app/operating-system/2023-06-18-02-distribuciones-linux
https://chaska-x.netlify.app/operating-system/2023-06-19-03-instalacion-linux/index.pdf
https://chaska-x.netlify.app/operating-system/2023-06-19-03-instalacion-linux
https://chaska-x.netlify.app/operating-system/2023-06-20-04-administracion-particiones-volumenes/index.pdf
https://chaska-x.netlify.app/operating-system/2023-06-20-04-administracion-particiones-volumenes
https://chaska-x.netlify.app/operating-system/2023-07-01-atajos-de-teclado-y-comandos-para-usar-vim/index.pdf
https://chaska-x.netlify.app/operating-system/2023-07-01-atajos-de-teclado-y-comandos-para-usar-vim
https://chaska-x.netlify.app/operating-system/2024-07-15-instalando-specitify/index.pdf
https://chaska-x.netlify.app/operating-system/2024-07-15-instalando-specitify
https://chaska-x.netlify.app/operating-system/2025-07-10-gestiona-tus-dotfiles-con-gnu-stow/index.pdf
https://chaska-x.netlify.app/operating-system/2025-07-10-gestiona-tus-dotfiles-con-gnu-stow

	Introduction
	Instalación y Configuración
	Instalación
	Método 1: Paquetes predeterminados (rápido y estable)
	Método 2: Desde la fuente (versión más reciente)

	Verificar Instalación
	Configuración Inicial
	Configuración de claves SSH para GitHub
	Generar una clave SSH
	Añadir la clave a ssh-agent
	Vincular la clave a GitHub

	Conceptos Fundamentales
	Objetos de Git
	Referencias Simbólicas
	Estados de Archivos
	SHA-1 y Hashes

	Comandos Básicos
	Crear e Inicializar Repositorios
	Estado y Diferencias
	Añadir Archivos (Staging)
	Commits
	Historial
	Deshacer Cambios
	Eliminar y Mover Archivos

	Branching y Merging
	Conceptos de Ramas
	Operaciones con Ramas
	Merging (Fusionar)
	Rebasing
	Cherry-pick

	Trabajo Remoto
	Repositorios Remotos
	Fetch, Pull y Push
	Tracking Branches

	Comandos Avanzados
	Stash (Guardar Temporalmente)
	Tags
	Buscar y Encontrar
	Reflog
	Worktrees
	Submodules
	Archivos y Bundles

	Resolución de Conflictos
	Identificar Conflictos
	Marcadores de Conflicto
	Resolver Conflictos

	Git Workflows
	Git Flow
	GitHub Flow
	Trunk-Based Development

	Ejemplos de uso diario de Git
	Flujo individual / Freelance / Proyectos personales
	Flujo típico de equipo mediano/pequeño con Pull Requests
	Corrección rápida de bug en producción
	Flujo cuando trabajas en varias tareas al mismo tiempo
	Mini-resumen de comandos que más se usan en la práctica diaria

	Mejores Prácticas
	Commits
	Branching
	Colaboración
	.gitignore

	Comandos de Bajo Nivel (Plumbing)
	Inspección de Objetos
	Manipulación del Index
	Objetos y Hashes

	Hooks y Automatización
	Git Hooks
	Aliases

	Troubleshooting
	Problemas Comunes

	Referencia Rápida
	Sintaxis de Referencias
	Especificar Rangos
	Variables de Entorno
	Configuración Útil
	Comandos de Emergencia
	Atajos de Teclado (Shell)
	Formato de Commit Convencional

	Recursos Adicionales
	Documentación Oficial
	Tutoriales y Cursos
	Herramientas
	Extensiones

	Glosario
	Conclusión
	Publicaciones Similares

