

[Comments]	1

Table of Contents

Gestiona dotfiles fácilmente con GNU Stow

Edison Achalma
Escuela Profesional de Economía, Universidad Nacional de San Cristóbal de Huamanga

Nota de Autores
[bookmark: orchid]Edison Achalma Orcid ID Logo: A green circle with white letters ID https://orcid.org/0000-0001-6996-3364
El autor no tiene conflictos de interés que revelar.
Los roles de autor se clasificaron utilizando la taxonomía de roles de colaborador (CRediT; https://credit.niso.org/) de la siguiente manera: Edison Achalma: conceptualización y redacción
La correspondencia relativa a este artículo debe dirigirse a Edison Achalma, Escuela Profesional de Economía, Universidad Nacional de San Cristóbal de Huamanga, Ayacucho, AYA, Perú, Email: elmer.achalma.09@unsch.edu.pe

Resumen
This tutorial provides a step-by-step guide to managing dotfiles using GNU Stow, a tool that leverages symbolic links to centralize and synchronize configuration files across Unix-like systems (Linux, macOS, WSL). It explains the importance of dotfiles, such as .bashrc and .gitconfig, in customizing user environments and highlights the inefficiencies of manual management. The guide details installing GNU Stow, creating a dotfiles repository, linking configurations, and automating the process with a bash script. Advanced tips include handling conflicts, platform-specific setups, and alternatives like Chezmoi and YADM. This resource is designed for developers seeking efficient, portable configuration management.
Palabras clave: Dotfiles, GNU Stow, Symbolic links, Configuration management, Git integration

Gestiona dotfiles fácilmente con GNU Stow
¿Alguna vez has perdido horas configurando tu terminal o editor tras cambiar de computadora? Los dotfiles, esos archivos ocultos como .bashrc o .gitconfig, guardan tus personalizaciones, pero gestionarlos a mano es un caos. GNU Stow simplifica todo: organiza tus configuraciones en un repositorio central y usa enlaces simbólicos para sincronizarlas en minutos.
¿Qué es Dotfiles?
Los dotfiles son archivos ocultos en sistemas Unix (Linux, macOS) que empiezan con un punto (ej., .zshrc, .gitconfig, .config/nvim). Almacenan configuraciones personalizadas para tu terminal, editor de código o gestor de ventanas. Por ejemplo, .bashrc define alias y variables de entorno, mientras que .vimrc ajusta tu editor Vim. Estos archivos son el corazón de tu flujo de trabajo, ya que personalizan tus herramientas favoritas.
Tener dotfiles bien organizados te ahorra horas al replicar tu entorno en nuevas máquinas. Imagina configurar tu shell o editor desde cero tras reinstalar tu sistema: ¡es tedioso! Con una gestión adecuada, puedes clonar tus configuraciones y tener todo listo rápidamente. Esto es importante para desarrolladores que trabajan en múltiples dispositivos o entornos como servidores y laptops.
Problemas de la Gestión Manual
Copiar dotfiles manualmente o usar scripts caseros es lento y arriesgado. Puedes sobrescribir archivos, olvidar configuraciones o perderlas en una reinstalación. Por ejemplo, mover .zshrc a otra máquina sin un sistema organizado puede causar errores si las versiones del software difieren. GNU Stow soluciona esto al centralizar tus archivos y crear enlaces simbólicos automáticamente, manteniendo todo sincronizado.
¿Qué es GNU Stow?
GNU Stow es un gestor de granjas de enlaces simbólicos (symlink farm manager) que permite administrar múltiples paquetes de software o conjuntos de archivos de configuración de manera organizada. Concepto principal:
Instalar cada paquete en su propio árbol de directorios
 ↓
Usar enlaces simbólicos para que aparezcan en un árbol común
 ↓
Administrar fácilmente cada paquete de forma independiente
Problema original:
En /usr/local/man/man1 tenías:
a2p.1 # ¿De qué paquete es?
perl.1 # ¿Perl?
emacs.1 # ¿Emacs?
etags.1 # ¿Emacs también?

Al desinstalar Perl... ¿qué archivos eliminar?
Solución con Stow:
Cada paquete en su propio árbol:
/usr/local/stow/perl/
├── bin/
│ ├── perl
│ └── a2p
└── man/
 └── man1/
 ├── perl.1
 └── a2p.1

/usr/local/stow/emacs/
├── bin/
│ └── emacs
└── man/
 └── man1/
 └── emacs.1

Stow crea symlinks en /usr/local/ que apuntan a los paquetes
Gestión de Dotfiles
Aunque Stow fue diseñado para software, hoy en día su uso principal es gestionar dotfiles:
Ventajas:
· Mantener dotfiles organizados por aplicación
· Sincronizar con Git
· Instalar/desinstalar configuraciones selectivamente
· Mantener backups sin perder estructura
· Compartir configuraciones entre máquinas
· Control de versiones granular
Comparación: Antes vs Después de Stow
Sin Stow:
~/.config/
├── nvim/
├── kitty/
├── zsh/
└── ...

Problemas:
- Difícil hacer backup selectivo
- No hay organización por paquete
- Complicado compartir entre máquinas
- Sin control de versiones granular
Con Stow:
~/dotfiles/ # Stow directory
├── nvim/ # Package
│ └── .config/
│ └── nvim/
├── kitty/ # Package
│ └── .config/
│ └── kitty/
└── zsh/ # Package
 ├── .zshrc
 └── .zshenv

Ventajas:
- Cada aplicación es un "paquete"
- Fácil stow/unstow selectivo
- Git maneja cada paquete independientemente
- Estructura clara y mantenible
1. Instalación
1.1 Linux
Ubuntu/Debian:
sudo apt update
sudo apt install stow
Arch Linux:
sudo pacman -S stow
Fedora/RHEL:
sudo dnf install stow
openSUSE:
sudo zypper install stow
1.2 macOS
Con Homebrew
brew install stow

O con MacPorts
sudo port install stow
1.3 Desde Fuente
Descargar última versión
wget https://ftp.gnu.org/gnu/stow/stow-latest.tar.gz
tar -xzf stow-latest.tar.gz
cd stow-2.4.1

Compilar e instalar
./configure
make
sudo make install
1.4 Verificar Instalación
Verificar versión
stow --version
GNU Stow version 2.4.1

Ver ayuda
stow --help
2. Conceptos Fundamentales
2.1 Terminología Clave
2.1.1 Package (Paquete)
Una colección relacionada de archivos y directorios que administras como una unidad.
Ejemplo: paquete "nvim"
nvim/
├── .config/
│ └── nvim/
│ ├── init.lua
│ └── lua/
└── .local/
 └── share/
 └── nvim/
2.1.2 Target Directory (Directorio Objetivo)
El directorio raíz donde quieres que aparezcan instalados tus paquetes.
Para dotfiles, usualmente es:
Target: ~/ (tu HOME)

Para software del sistema:
Target: /usr/local
2.1.3 Stow Directory (Directorio Stow)
El directorio raíz que contiene todos tus paquetes en subdirectorios separados.
Para dotfiles:
Stow dir: ~/dotfiles/

Para software:
Stow dir: /usr/local/stow/
2.1.4 Installation Image (Imagen de Instalación)
La estructura de archivos y directorios requerida por un paquete, relativa al target directory.
El paquete "zsh" tiene esta imagen:
zsh/
├── .zshrc # → ~/.zshrc
├── .zshenv # → ~/.zshenv
└── .config/
 └── zsh/ # → ~/.config/zsh/
 └── aliases.zsh
2.1.5 Symlink (Enlace Simbólico)
Un archivo especial que apunta a otro archivo o directorio.
Ejemplo:
~/.zshrc -> ~/dotfiles/zsh/.zshrc
 ↑
 symlink
Tipos de symlinks:
· Absoluto: /home/user/dotfiles/zsh/.zshrc
· Relativo: ../dotfiles/zsh/.zshrc
Nota: Stow solo crea symlinks relativos dentro del target directory.
2.2 Jerarquía de Directorios
┌───┐
│ /home/user/ (target directory) │
│ │
│ .zshrc ──────┐ │
│ .config/ │ │
│ ├── nvim/ │ symlinks │
│ └── kitty/ │ │
└─────────────────┼──────────────────────┘
 │
 ↓
┌───┐
│ /home/user/dotfiles/ (stow dir) │
│ │
│ ├── zsh/ (package) │
│ │ └── .zshrc │
│ ├── nvim/ (package) │
│ │ └── .config/ │
│ │ └── nvim/ │
│ └── kitty/ (package) │
│ └── .config/ │
│ └── kitty/ │
└───┘
3. Sintaxis y Comandos
3.1 Sintaxis Básica
stow [opciones] [flags de acción] paquete1 paquete2 ...
3.2 Acciones Principales
3.2.1 Stow (Instalar)
Instalar un paquete
stow nombre-paquete

Instalar múltiples paquetes
stow nvim zsh kitty

Flag explícito (opcional)
stow -S nvim
stow --stow nvim
3.2.2 Delete (Desinstalar)
Desinstalar un paquete
stow -D nvim
stow --delete nvim

Desinstalar múltiples
stow -D nvim zsh kitty
3.2.3 Restow (Reinstalar)
Unstow + Stow en una operación
stow -R nvim
stow --restow nvim

Útil después de actualizar paquete
3.3 Opciones de Directorio
3.3.1 -d / --dir (Stow Directory)
Especificar stow directory
stow -d ~/mis-dotfiles -t ~ nvim

Default: directorio actual
3.3.2 -t / --target (Target Directory)
Especificar target directory
stow -t /usr/local perl

Default: padre del stow directory
Ejemplo completo:
Estructura:
/opt/
 └── myapps/ # stow directory
 └── myapp/ # package
 └── bin/
 └── myapp

Comando:
cd /opt/myapps
stow -t /usr/local myapp

Resultado:
/usr/local/bin/myapp -> ../opt/myapps/myapp/bin/myapp
3.4 Opciones de Simulación y Verbosidad
3.4.1 -n / --no / --simulate (Dry Run)
Mostrar qué haría sin hacer cambios
stow -n nvim
stow --simulate nvim

Combinado con verbose
stow -nv nvim
3.4.2 -v / --verbose (Verbosidad)
Niveles de verbosidad: 0-5
stow -v nvim # verbose level 1
stow -vv nvim # verbose level 2
stow --verbose=5 nvim # verbose level 5

Nivel 0: silencioso (default)
Nivel 1-2: operaciones principales
Nivel 3-5: debug detallado
Ejemplo:
$ stow -nv zsh
WARNING! stowing zsh would cause conflicts:
 * existing target is neither a link nor a directory: .zshrc
All operations aborted.
3.5 Opciones Avanzadas
3.5.1 --ignore (Ignorar Archivos)
Ignorar archivos que coincidan con regexp
stow --ignore='.*\.orig' --ignore='.*\.dist' nvim

Múltiples patrones
stow --ignore='README.*' --ignore='.*~' nvim
3.5.2 --defer (Diferir)
No sobrescribir si ya existe desde otro paquete
stow --defer=man --defer=info perl
3.5.3 --override (Sobrescribir)
Forzar sobrescribir symlinks existentes
stow --override=man --override=info perl
3.5.4 --dotfiles (Modo Dotfiles)
Transforma "dot-" en "."
dot-bashrc → .bashrc
stow --dotfiles bash

Ejemplo de paquete:
bash/
 └── dot-bashrc # Se convierte en ~/.bashrc
3.5.5 --no-folding (Sin Tree Folding)
Desactivar tree folding
stow --no-folding nvim

Crea directorios en lugar de symlinks a directorios
3.5.6 --adopt (Adoptar Archivos)
CUIDADO: Modifica el stow directory
Mueve archivos del target al package

stow --adopt nvim

Si ~/.config/nvim/init.lua existe:
Lo mueve a ~/dotfiles/nvim/.config/nvim/init.lua
Luego crea el symlink
3.6 Combinando Operaciones
Mezclar múltiples acciones
stow -D old-nvim -S new-nvim

Orden de ejecución:
1. Unstow old-nvim
2. Stow new-nvim

Múltiples paquetes, múltiples acciones
stow -S pkg1 pkg2 -D pkg3 pkg4 -S pkg5 -R pkg6
Resultado: unstow pkg3,4,6 → stow pkg1,2,5,6
4. Estructura de Directorios
4.1 Estructura Recomendada para Dotfiles
~/dotfiles/ # Stow directory
├── git/ # Package
│ └── .gitconfig
├── zsh/ # Package
│ ├── .zshrc
│ ├── .zshenv
│ └── .config/
│ └── zsh/
│ ├── aliases.zsh
│ └── functions.zsh
├── nvim/ # Package
│ └── .config/
│ └── nvim/
│ ├── init.lua
│ └── lua/
│ ├── plugins/
│ └── config/
├── kitty/ # Package
│ └── .config/
│ └── kitty/
│ ├── kitty.conf
│ └── themes/
├── tmux/ # Package
│ ├── .tmux.conf
│ └── .config/
│ └── tmux/
└── kde/ # Package
 └── .config/
 ├── kdeglobals
 ├── dolphinrc
 └── kwinrc
4.2 Principios de Organización
4.2.1 Un Directorio = Un Paquete
Bien: un paquete por aplicación
nvim/
 └── .config/
 └── nvim/

Mal: múltiples aplicaciones en un paquete
editors/
 ├── .config/
 │ ├── nvim/
 │ └── vim/
 └── .vimrc
4.2.2 Replicar Estructura del HOME
El contenido del paquete debe replicar la estructura de ~/

Ejemplo: archivo en ~/.config/kitty/kitty.conf
Paquete debe ser:
kitty/
 └── .config/ # replica la estructura
 └── kitty/
 └── kitty.conf

NO:
kitty/
 └── kitty.conf # falta .config/
4.2.3 Agrupar Lógicamente
Opción 1: Por aplicación
~/dotfiles/
├── nvim/
├── vim/
└── emacs/

Opción 2: Por categoría (menos común)
~/dotfiles/
├── editors/
│ ├── .vimrc
│ └── .config/nvim/
└── shells/
 ├── .zshrc
 └── .bashrc

Recomendado: Opción 1 (por aplicación)
4.3 Ejemplos de Estructuras
4.3.1 Estructura Simple
~/dotfiles/
├── bash/
│ └── .bashrc
├── git/
│ └── .gitconfig
└── vim/
 └── .vimrc
Instalación:
mkdir ~/dotfiles
cd ~/dotfiles

Crear la estructura para bash
mkdir -p bash

o mueve, o crea symlink, como prefieras
cp ~/.bashrc bash/.bashrc
(opcional) cp ~/.bash_profile bash/.bash_profile

Para git
mkdir git
cp ~/.gitconfig git/.gitconfig

Para vim
mkdir vim
cp ~/.vimrc vim/.vimrc
si tienes ~/.vim/ con plugins, etc → también lo copias/mueves

Para zsh + oh-my-zsh customizaciones
mkdir -p zsh/.config
cp ~/.zshrc zsh/.zshrc
Una vez que tengas (por ejemplo) la carpeta bash/ con .bashrc dentro:
cd ~/dotfiles

Instalar un paquete
stow bash # → crea symlink ~/.bashrc → ~/dotfiles/bash/.bashrc
stow git
stow vim

Instalar múltiples paquetes
stow bash git vim nvim kitty zsh
Resultado:
~/.bashrc -> dotfiles/bash/.bashrc
~/.gitconfig -> dotfiles/git/.gitconfig
~/.vimrc -> dotfiles/vim/.vimrc
4.3.2 Estructura Compleja
~/dotfiles/
├── shell/
│ ├── .bashrc
│ ├── .zshrc
│ └── .config/
│ ├── bash/
│ │ └── aliases.bash
│ └── zsh/
│ └── aliases.zsh
├── terminal/
│ └── .config/
│ ├── kitty/
│ │ ├── kitty.conf
│ │ └── themes/
│ └── alacritty/
│ └── alacritty.yml
└── editor/
 └── .config/
 └── nvim/
 ├── init.lua
 └── lua/
 └── plugins.lua
5. Instalación de Paquetes
5.1 Proceso de Instalación
5.1.1 Tree Folding (Plegado de Árbol)
Stow intenta crear el mínimo número de symlinks posible.
Ejemplo 1: Target Vacío
Estado inicial:
~/ (vacío, sin ~/.config/)

Paquete:
~/dotfiles/nvim/
 └── .config/
 └── nvim/
 └── init.lua

Comando:
cd ~/dotfiles
stow nvim

Resultado (tree folding):
~/.config -> dotfiles/nvim/.config/

En lugar de:
~/.config/nvim/init.lua -> ...
Stow crea un symlink al directorio completo
Ejemplo 2: Target con Archivos Existentes
Estado inicial:
~/.config/
 └── kitty/ # ya existe
 └── kitty.conf

Paquete:
~/dotfiles/nvim/
 └── .config/
 └── nvim/
 └── init.lua

Comando:
stow nvim

Resultado (NO puede hacer tree folding):
~/.config/ # directorio real
 ├── kitty/ # ya existía
 │ └── kitty.conf
 └── nvim -> ../dotfiles/nvim/.config/nvim/
5.1.2 Tree Unfolding (Desplegado de Árbol)
Cuando un symlink plegado debe ser “abierto” para acomodar otro paquete.
Escenario:
Estado inicial:
~/.config -> dotfiles/nvim/.config/

Instalar otro paquete:
~/dotfiles/kitty/
 └── .config/
 └── kitty/
 └── kitty.conf

Comando:
stow kitty

Proceso de unfolding:
1. Eliminar symlink: ~/.config
2. Crear directorio: ~/.config/
3. Crear symlinks:
~/.config/nvim -> ../dotfiles/nvim/.config/nvim/
~/.config/kitty -> ../dotfiles/kitty/.config/kitty/
5.2 Instalación Básica
Crea el directorio
mkdir ~/dotfiles

Navegar al stow directory
cd ~/dotfiles

Instalar un paquete
stow nvim

Instalar múltiples paquetes
stow nvim zsh git kitty

Instalar todos los paquetes
stow */
5.3 Instalación con Verificación
Dry run primero (simular)
stow -nv nvim

Si todo OK, instalar realmente
stow nvim

Verificar symlinks creados
ls -la ~/.config/nvim
5.4 Instalación Selectiva
Solo paquetes de terminal
stow kitty alacritty tmux

Solo paquetes de shell
stow bash zsh fish

Solo paquetes de editor
stow nvim vim emacs
6. Desinstalación de Paquetes
6.1 Proceso de Desinstalación
6.1.1 Eliminación de Symlinks
Paquete instalado:
~/.zshrc -> dotfiles/zsh/.zshrc

Desinstalar:
cd ~/dotfiles
stow -D zsh

Resultado:
~/.zshrc eliminado (porque era symlink a stow package)
6.1.2 Eliminación de Directorios Vacíos
Antes:
~/.config/
 └── nvim -> ../dotfiles/nvim/.config/nvim/

Desinstalar:
stow -D nvim

Después:
~/.config/ eliminado (si quedó vacío)
6.1.3 Tree Refolding (Re-plegado)
Después de eliminar symlinks, si un directorio contiene solo symlinks a un único paquete, Stow lo “re-pliega”.
Escenario:
Estado actual:
~/.config/
 ├── nvim -> ../dotfiles/nvim/.config/nvim/
 └── kitty -> ../dotfiles/kitty/.config/kitty/

Desinstalar kitty:
stow -D kitty

Resultado (refolding):
~/.config -> dotfiles/nvim/.config/
6.2 Desinstalación Básica
Navegar al stow directory
cd ~/dotfiles

Desinstalar un paquete
stow -D nvim

Desinstalar múltiples paquetes
stow -D nvim zsh git

Desinstalar todos los paquetes
stow -D */
6.3 Desinstalación con Verificación
Dry run primero
stow -Dnv nvim

Si todo OK, desinstalar realmente
stow -D nvim

Verificar que symlinks fueron eliminados
ls -la ~/.config/nvim
6.4 Desinstalación Parcial
Desinstalar solo configuraciones de terminal
stow -D kitty alacritty tmux

Mantener el resto
7. Reinstalación de Paquetes
7.1 Comando Restow
Restow = Unstow + Stow
stow -R nvim
stow --restow nvim
7.2 Cuándo Usar Restow
1. Después de actualizar un paquete:
Editaste archivos en ~/dotfiles/nvim/
cd ~/dotfiles
stow -R nvim

Esto actualiza los symlinks si la estructura cambió
2. Para limpiar symlinks obsoletos:
Eliminaste archivos del paquete
stow -R nvim

Restow elimina symlinks huérfanos
3. Después de cambiar estructura:
Moviste archivos dentro del paquete
Antes: nvim/.vimrc
Ahora: nvim/.config/nvim/init.lua

stow -R nvim
7.3 Restow vs Delete + Stow
Método 1: Restow (recomendado)
stow -R nvim

Método 2: Manual (equivalente)
stow -D nvim
stow nvim

Ventaja de -R: más rápido, optimizado
8. Gestión de Dotfiles
8.1 Setup Inicial
8.1.1 Crear Estructura
Crear directorio para dotfiles
mkdir -p ~/dotfiles
cd ~/dotfiles

Inicializar Git
git init
8.1.2 Mover Configuraciones Existentes
Método manual:
Crear paquete
mkdir -p ~/dotfiles/zsh

Mover archivos
mv ~/.zshrc ~/dotfiles/zsh/
mv ~/.zshenv ~/dotfiles/zsh/

Stow
cd ~/dotfiles
stow zsh
Con script:
#!/bin/bash
migrate-to-stow.sh

DOTFILES="$HOME/dotfiles"
mkdir -p "$DOTFILES"

Migrar zsh
mkdir -p "$DOTFILES/zsh"
mv ~/.zshrc "$DOTFILES/zsh/"
mv ~/.zshenv "$DOTFILES/zsh/"

Migrar nvim
mkdir -p "$DOTFILES/nvim/.config"
mv ~/.config/nvim "$DOTFILES/nvim/.config/"

Migrar git
mkdir -p "$DOTFILES/git"
mv ~/.gitconfig "$DOTFILES/git/"

Stow todo
cd "$DOTFILES"
stow zsh nvim git
8.1.3 Usar --adopt (Con Precaución)
Crear estructura primero
mkdir -p ~/dotfiles/nvim/.config
mkdir ~/dotfiles/nvim/.config/nvim

Adoptar configuración existente
cd ~/dotfiles
stow --adopt nvim

Esto MUEVE ~/.config/nvim/* a ~/dotfiles/nvim/.config/nvim/
Y luego crea el symlink
8.2 Workflow Diario
8.2.1 Editar Configuraciones
Los symlinks te permiten editar en cualquier lugar:

Opción 1: Editar en home (a través del symlink)
nvim ~/.zshrc # Edita ~/dotfiles/zsh/.zshrc

Opción 2: Editar directamente en dotfiles
nvim ~/dotfiles/zsh/.zshrc # Mismo archivo
8.2.2 Agregar Nueva Aplicación
1. Crear paquete
cd ~/dotfiles
mkdir -p new-app/.config/new-app

2. Agregar archivos
cp -r ~/.config/new-app/* new-app/.config/new-app/

3. Remover originales
rm -rf ~/.config/new-app

4. Stow
stow new-app

5. Commit a Git
git add new-app/
git commit -m "Add new-app configuration"
8.2.3 Sincronizar con Git
cd ~/dotfiles

Después de cambios
git add .
git commit -m "Update nvim configuration"
git push origin main

En otra máquina
git pull origin main
stow nvim # o stow -R nvim si ya estaba instalado
8.3 Manejo de Archivos Sensibles
8.3.1 Estrategia 1: .gitignore
~/dotfiles/.gitignore
Ignorar archivos sensibles

SSH keys
.ssh/id_*
.ssh/*.pem

Contraseñas
.netrc
.authinfo

Tokens
.config/gh/hosts.yml
8.3.2 Estrategia 2: Archivos Template
Crear template sin datos sensibles
~/dotfiles/git/.gitconfig.local.template
[user]
 name = YOUR_NAME
 email = YOUR_EMAIL

.gitignore
.gitconfig.local

Script de setup
#!/bin/bash
if [! -f ~/dotfiles/git/.gitconfig.local]; then
 cp ~/dotfiles/git/.gitconfig.local.template \
 ~/dotfiles/git/.gitconfig.local
 echo "Edit ~/dotfiles/git/.gitconfig.local"
fi
8.3.3 Estrategia 3: Encriptación
Usar git-crypt o similar
cd ~/dotfiles
git-crypt init

Especificar qué encriptar
.gitattributes
.netrc filter=git-crypt diff=git-crypt
.ssh/id_* filter=git-crypt diff=git-crypt
8.4 Estructura para Múltiples Hosts
~/dotfiles/
├── common/ # Compartido entre todos
│ ├── git/
│ └── tmux/
├── desktop/ # Solo desktop
│ ├── kde/
│ └── i3/
├── laptop/ # Solo laptop
│ └── power-management/
└── server/ # Solo servers
 └── ssh/
Script de instalación por host:
#!/bin/bash
install.sh

HOSTNAME=$(hostname)

Instalar común
cd ~/dotfiles/common
stow */

Instalar específico del host
case "$HOSTNAME" in
 desktop-main)
 cd ~/dotfiles/desktop
 stow */
 ;;
 laptop-work)
 cd ~/dotfiles/laptop
 stow */
 ;;
 server-*)
 cd ~/dotfiles/server
 stow */
 ;;
esac
9. Ignore Lists
9.1 Tipos de Ignore Lists
9.1.1 Built-in (Predeterminado)
Stow ignora automáticamente:
RCS
.+,v
CVS
\.\#.+ # CVS conflict files / emacs lock files
\.cvsignore
\.svn
_darcs
\.hg
\.git
\.gitignore
\.gitmodules
.+~ # emacs backup files
\#.*\# # emacs autosave files
^/README.*
^/LICENSE.*
^/COPYING
9.1.2 Global Ignore List
Archivo: ~/.stow-global-ignore
~/.stow-global-ignore

Archivos de respaldo
.*\.bak
.*\.old
.*\.orig

Temporales
.*\.swp
.*\.tmp

OS específicos
\.DS_Store
Thumbs\.db

IDEs
\.idea
\.vscode

Build artifacts
node_modules
__pycache__
*.pyc
9.1.3 Package-Local Ignore List
Archivo: <package>/.stow-local-ignore
~/dotfiles/nvim/.stow-local-ignore

Plugin managers
^/\.config/nvim/plugin/packer_compiled\.lua

Cache
^/\.config/nvim/.*\.cache/

Logs
^/\.config/nvim/.*\.log

Lazy-lock
^/\.config/nvim/lazy-lock\.json
9.2 Sintaxis de Ignore Lists
9.2.1 Reglas de Matching
1. Expresiones con / (path completo):
Match contra path completo desde raíz del paquete
^/README.* # README en raíz
^/\.config/nvim/cache/ # Directorio cache específico
2. Expresiones sin / (basename):
Match contra nombre del archivo/directorio
README.* # Cualquier README en cualquier ubicación
.*\.log # Archivos .log en cualquier ubicación
9.2.2 Ejemplos Prácticos
Ejemplo 1: Ignorar documentación:
.stow-local-ignore
^/README.*
^/LICENSE.*
^/CHANGELOG.*
^/docs/
Ejemplo 2: Ignorar archivos temporales:
.stow-local-ignore
.*\.swp$
.*\.swo$
.*~$
\#.*\#$
Ejemplo 3: Ignorar por aplicación:
nvim/.stow-local-ignore
^/\.config/nvim/plugin/
^/\.config/nvim/.*\.cache/
lazy-lock\.json

zsh/.stow-local-ignore
\.zcompdump
\.zsh_history
9.3 Precedencia de Ignore Lists
1. .stow-local-ignore (en paquete)
 ↓ (si no existe)
2. ~/.stow-global-ignore
 ↓ (si no existe)
3. Built-in ignore list
9.4 Opción --ignore en CLI
Ignorar específicos para esta ejecución
stow --ignore='.*\.orig' --ignore='.*\.dist' nvim

Equivalente a expresión OR
stow --ignore='.*\.orig|.*\.dist' nvim

Combina con ignore lists existentes
10. Opciones Avanzadas
10.1 Tree Folding Control
10.1.1 --no-folding
Desactiva tree folding completamente.
Sin –no-folding (default):
Resultado:
~/.config -> dotfiles/nvim/.config/
Con –no-folding:
Resultado:
~/.config/ # directorio real
 └── nvim -> ../dotfiles/nvim/.config/nvim/
Uso:
stow --no-folding nvim
10.2 Adopt Mode
10.2.1 --adopt
ADVERTENCIA: Modifica el contenido del stow directory.
Escenario:
Tienes configuración existente:
~/.config/nvim/init.lua

Quieres adoptarla en tu paquete:
~/dotfiles/nvim/.config/nvim/ (vacío)

Comando:
cd ~/dotfiles
stow --adopt nvim

Resultado:
1. ~/.config/nvim/init.lua → movido a ~/dotfiles/nvim/.config/nvim/init.lua
2. ~/.config/nvim/init.lua → se convierte en symlink
Uso con Git:
1. Adoptar archivos
stow --adopt nvim

2. Ver diferencias
cd nvim
git diff

3. Decidir qué mantener
git add -p # Añadir selectivamente
o
git checkout HEAD -- . # Descartar cambios adoptados
10.3 Defer y Override
10.3.1 --defer
Evita stowing si el archivo ya está stowed por otro paquete.
Escenario:
paquete-a tiene:
paquete-a/
 └── .config/
 └── shared/
 └── config.txt

paquete-b tiene:
paquete-b/
 └── .config/
 └── shared/
 └── config.txt

Instalar A primero:
stow paquete-a # OK

Instalar B con defer:
stow --defer='.config/shared/config.txt' paquete-b
B no sobrescribirá config.txt de A
10.3.2 --override
Fuerza stowing incluso si ya existe symlink de otro paquete.
Escenario:
Mismo escenario de arriba

Instalar B con override:
stow --override='.config/shared/' paquete-b
B sobrescribirá todos los archivos en .config/shared/
10.4 Dotfiles Mode
10.4.1 --dotfiles
Transforma dot- en . al hacer stow.
Uso:
Estructura del paquete:
bash/
 ├── dot-bashrc
 ├── dot-bash_profile
 └── dot-config/
 └── bash/
 └── aliases.bash

Stow con --dotfiles:
stow --dotfiles bash

Resultado:
~/.bashrc -> dotfiles/bash/dot-bashrc
~/.bash_profile -> dotfiles/bash/dot-bash_profile
~/.config/ ...
Ventajas:
· Mantiene paquetes visibles (no ocultos por .)
· Más fácil navegar en GUI
· Mejor para Git
Desventajas:
· Necesita usar --dotfiles siempre
· Puede confundir
· No estándar
Recomendación: Usar nombres normales con . en vez de dot-.
10.5 Multiple Stow Directories
Puedes tener múltiples stow directories para diferentes propósitos.
Ejemplo:
Estructura:
~/dotfiles/ # Personal configs
 └── nvim/

~/work-dotfiles/ # Work configs
 └── nvim/

Marcar como stow directories:
touch ~/dotfiles/.stow
touch ~/work-dotfiles/.stow

Stow desde diferentes directorios:
cd ~/dotfiles && stow nvim
cd ~/work-dotfiles && stow nvim
.stow file: Indica que un directorio es stow directory, protegiéndolo de operaciones de unstow.
11. Integración con Git
11.1 Estructura de Repositorio
~/dotfiles/
├── .git/
├── .gitignore
├── .stowrc
├── README.md
├── LICENSE
├── install.sh
├── uninstall.sh
├── check-stow.sh
├── zsh/
│ ├── .stow-local-ignore
│ ├── .zshrc
│ └── .zshenv
├── nvim/
│ ├── .stow-local-ignore
│ └── .config/
│ └── nvim/
└── ... (más paquetes)
11.2 .gitignore Completo
~/dotfiles/.gitignore

==
BACKUPS
==
*~
*.bak
*.old
*.orig
*.swp
*.swo

==
HISTORIA Y DATOS SENSIBLES
==

Shell history (puede contener comandos con passwords)
**/.zsh_history
**/.bash_history
**/.history

Credenciales
.netrc
.authinfo
**/.ssh/id_*
**/.ssh/*.pem

Tokens
**/.config/gh/hosts.yml

==
CACHE Y TEMPORALES
==

Directorios de cache
**/.cache/
**/__pycache__/
**/node_modules/

Compilados
*.pyc
*.zwc
.zcompdump*

Logs
**/*.log

==
ARCHIVOS DE SISTEMA
==
.DS_Store
Thumbs.db
desktop.ini

==
STOW
==
.stow

==
APLICACIONES ESPECÍFICAS
==

Zotero (database muy grande)
zotero/.zotero/zotero/*/zotero.sqlite*
zotero/.zotero/zotero/*/storage/

VSCode
vscode/.config/Code/User/workspaceStorage/
vscode/.config/Code/CachedData/
vscode/.config/Code/logs/

Obsidian
obsidian/Documents/thoughts/.obsidian/workspace
obsidian/Documents/thoughts/.obsidian/workspace.json

KDE
kde/.config/session/
kde/.cache/
11.3 Commits Best Practices
Commits semánticos

Agregar nueva aplicación
git commit -m "feat(tmux): Add tmux configuration"

Actualizar configuración
git commit -m "chore(nvim): Update LSP settings"

Fix
git commit -m "fix(zsh): Correct path to starship"

Documentación
git commit -m "docs: Update README with stow instructions"

Refactor
git commit -m "refactor(shell): Reorganize shell configs"
11.4 Branches Strategy
Main branch
main # Configuración estable

Feature branches
feature/add-tmux-config
feature/new-nvim-setup

Experimental
experiment/test-fish-shell
experiment/new-colorscheme

Host-specific
host/desktop-main
host/laptop-work
host/server-prod
11.5 Tags para Versiones
Tagear versiones estables
git tag -a v1.0.0 -m "Stable dotfiles v1.0.0"
git push origin v1.0.0

Ver tags
git tag -l

Checkout a tag
git checkout v1.0.0
11.6 Submodules para Plugins
Agregar plugin como submodule
cd ~/dotfiles/nvim/.config/nvim
git submodule add https://github.com/user/plugin.git pack/plugins/start/plugin

Actualizar submodules
git submodule update --init --recursive

Pull con submodules
git pull --recurse-submodules
11.7 GitHub Actions para Validación
.github/workflows/validate.yml

name: Validate Dotfiles

on: [push, pull_request]

jobs:
 validate:
 runs-on: ubuntu-latest

 steps:
 - uses: actions/checkout@v2

 - name: Install stow
 run: sudo apt-get install -y stow

 - name: Test stow (dry run)
 run: |
 cd $GITHUB_WORKSPACE
 stow -nv */

 - name: Check for sensitive data
 run: |
 # Verificar que no haya claves SSH
 if find . -name "id_rsa" -o -name "id_ed25519"; then
 echo "ERROR: SSH keys found!"
 exit 1
 fi
12. Troubleshooting
12.1 Problema 1: Conflictos al Stow
Error:
WARNING! stowing nvim would cause conflicts:
 * existing target is neither a link nor a directory: .config/nvim/init.lua
All operations aborted.
Causa: Ya existe un archivo/directorio en el target que no es un symlink de Stow.
Soluciones:
Opción 1: Hacer backup y eliminar
Backup
cp ~/.config/nvim/init.lua ~/.config/nvim/init.lua.backup

Eliminar
rm ~/.config/nvim/init.lua

Stow
stow nvim
Opción 2: Usar –adopt (cuidado)
stow --adopt nvim
Mueve el archivo al paquete y crea symlink
Opción 3: Verificar y resolver manualmente
Ver qué está causando conflicto
stow -nv nvim

Resolver caso por caso
12.2 Problema 2: Symlinks Rotos
Error:
ls -la ~/.zshrc
lrwxrwxrwxzshrc -> dotfiles/zsh/.zshrc (broken)
Causa: El paquete fue movido o eliminado.
Soluciones:
Opción 1: Restow
cd ~/dotfiles
stow -R zsh
Opción 2: Desinstalar y reinstalar
stow -D zsh # Limpia symlinks rotos
stow zsh # Crea nuevos
Opción 3: Encontrar todos los symlinks rotos
Encontrar symlinks rotos en HOME
find ~/ -xtype l

Eliminar symlinks rotos de Stow
find ~/ -xtype l -lname '*dotfiles*' -delete
12.3 Problema 3: Directorio No Vacío
Error:
BUG in find_stowed_path? Absolute/relative mismatch
Causa: Stow está confundido por la estructura de directorios.
Solución:
Verificar que estás en el stow directory
pwd # Debe ser ~/dotfiles

Verificar estructura del paquete
tree nvim

Usar paths correctos
cd ~/dotfiles
stow -t ~ nvim
12.4 Problema 4: Tree Folding Inesperado
Problema: Stow crea symlink a directorio completo en lugar de entrar y enlazar archivos.
Ejemplo:
Esperado:
~/.config/
 └── nvim/ (directorio)
 └── init.lua -> ~/dotfiles/nvim/.config/nvim/init.lua

Obtenido:
~/.config/
 └── nvim -> ~/dotfiles/nvim/.config/nvim/ (symlink a directorio)
Causa: Stow hace tree folding por defecto para minimizar symlinks.
Solución si no lo quieres:
Usar --no-folding
stow --no-folding nvim

O desplegar manualmente
stow -D nvim # Remover
mkdir -p ~/.config/nvim # Crear directorio
stow --no-folding nvim # Stow sin folding
12.5 Problema 5: Permiso Denegado
Error:
cannot stow: permission denied
Causa: No tienes permisos para crear symlinks en target directory.
Soluciones:
Para /usr/local:
Cambiar ownership
sudo chown -R $USER:$USER /usr/local

O usar sudo (no recomendado)
sudo stow -t /usr/local myapp
Para HOME:
Verificar ownership
ls -ld ~
drwxr-xr-x 50 user user ...

Si no eres owner:
sudo chown -R $USER:$USER ~
12.6 Problema 6: Stow No Encuentra Paquete
Error:
stow: Cannot read package description: No such file or directory
Causa: No estás en el stow directory o el paquete no existe.
Solución:
Verificar ubicación
pwd

Listar paquetes disponibles
ls -d */

Cambiar a stow directory
cd ~/dotfiles

Stow
stow nvim
12.7 Problema 7: .stowrc No Se Aplica
Problema: Las opciones en .stowrc no se usan.
Causas y soluciones:
1. Archivo en ubicación incorrecta:
.stowrc debe estar en:
- Directorio actual (donde ejecutas stow)
- O ~/

Verificar:
ls -la .stowrc
ls -la ~/.stowrc
2. Sintaxis incorrecta:
Correcto:
--target=/home/user

Incorrecto:
target=/home/user # Sin --
3. Variables no expandidas:
Use $HOME con comillas si es necesario
--target=$HOME
12.8 Problema 8: Stow Muy Lento
Causa: Directorios muy grandes o muchos archivos.
Soluciones:
1. Usar ignore lists:
Ignorar directorios grandes
~/.stow-global-ignore
node_modules
__pycache__
.cache
storage
2. Evitar stowing todo junto:
En lugar de:
stow */ # Lento si hay muchos paquetes

Hacer:
stow nvim zsh git # Solo los necesarios
3. Simplificar estructura:
Dividir paquetes grandes en paquetes más pequeños
13. Scripts de Automatización
13.1 Script 1: install.sh Completo
Ya proporcioné un ejemplo arriba. Aquí una versión más robusta:
#!/bin/bash
~/dotfiles/install.sh

set -e

SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
DOTFILES="$SCRIPT_DIR"
BACKUP_DIR="$HOME/dotfiles-backup-$(date +%Y%m%d-%H%M%S)"
LOG_FILE="$DOTFILES/install.log"

Colores
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
BLUE='\033[0;34m'
NC='\033[0m'

Logging
log() {
 echo -e "$1" | tee -a "$LOG_FILE"
}

log_info() {
 log "${BLUE}[$(date +'%Y-%m-%d %H:%M:%S')]${NC} ${GREEN}[INFO]${NC} $1"
}

log_warn() {
 log "${BLUE}[$(date +'%Y-%m-%d %H:%M:%S')]${NC} ${YELLOW}[WARN]${NC} $1"
}

log_error() {
 log "${BLUE}[$(date +'%Y-%m-%d %H:%M:%S')]${NC} ${RED}[ERROR]${NC} $1"
}

Verificar dependencias
check_dependencies() {
 log_info "Verificando dependencias..."

 if ! command -v stow &> /dev/null; then
 log_error "Stow no está instalado"
 read -p "¿Instalar stow? [Y/n] " -n 1 -r
 echo
 if [[! $REPLY =~ ^[Nn]$]]; then
 if command -v apt &> /dev/null; then
 sudo apt update && sudo apt install -y stow
 elif command -v pacman &> /dev/null; then
 sudo pacman -S stow
 elif command -v brew &> /dev/null; then
 brew install stow
 else
 log_error "No se pudo instalar stow automáticamente"
 exit 1
 fi
 else
 exit 1
 fi
 fi

 log_info "✓ Dependencias OK"
}

Backup de archivo/directorio existente
backup_if_exists() {
 local path="$1"
 local name="$2"

 if [-e "$path"] && [! -L "$path"]; then
 log_warn "Existe: $path"
 mkdir -p "$BACKUP_DIR"
 cp -r "$path" "$BACKUP_DIR/"
 log_info "Backup: $name → $BACKUP_DIR/"
 return 0
 fi
 return 1
}

Verificar conflictos antes de stow
check_conflicts() {
 local package="$1"

 if stow -nv "$package" 2>&1 | grep -q "WARNING\|ERROR"; then
 return 1
 fi
 return 0
}

Stow paquete con manejo de errores
stow_package() {
 local package="$1"
 local force="${2:-false}"

 if [! -d "$package"]; then
 log_error "Paquete no existe: $package"
 return 1
 fi

 log_info "Procesando: $package"

 # Check conflicts
 if ! check_conflicts "$package"; then
 log_warn "Conflictos detectados en: $package"

 if ["$force" = "true"]; then
 log_info "Forzando instalación..."
 # Aquí podrías implementar lógica de backup automático
 else
 read -p "¿Continuar? [y/N] " -n 1 -r
 echo
 if [[! $REPLY =~ ^[Yy]$]]; then
 log_error "Saltado: $package"
 return 1
 fi
 fi
 fi

 # Stow
 if stow -v "$package"; then
 log_info "✓ Instalado: $package"
 return 0
 else
 log_error "✗ Error al instalar: $package"
 return 1
 fi
}

Mostrar ayuda
show_help() {
 cat << EOF
Uso: $0 [opciones] [paquetes...]

Opciones:
 -h, --help Mostrar esta ayuda
 -a, --all Instalar todos los paquetes
 -f, --force Forzar instalación (saltear prompts)
 -l, --list Listar paquetes disponibles
 -d, --dry-run Simular sin hacer cambios

Ejemplos:
 $0 nvim zsh git # Instalar paquetes específicos
 $0 --all # Instalar todo
 $0 --list # Ver paquetes disponibles
EOF
}

Listar paquetes disponibles
list_packages() {
 log_info "Paquetes disponibles:"
 cd "$DOTFILES"
 for package in */; do
 package=${package%/}
 if ["$package" != ".git"] && [-d "$package"]; then
 echo " - $package"
 fi
 done
}

Main
main() {
 local force=false
 local dry_run=false
 local packages=()

 # Parse argumentos
 while [[$# -gt 0]]; do
 case $1 in
 -h|--help)
 show_help
 exit 0
 ;;
 -a|--all)
 cd "$DOTFILES"
 packages=($(ls -d */ | sed 's#/#' | grep -v '^\.'))
 shift
 ;;
 -f|--force)
 force=true
 shift
 ;;
 -l|--list)
 list_packages
 exit 0
 ;;
 -d|--dry-run)
 dry_run=true
 shift
 ;;
 *)
 packages+=("$1")
 shift
 ;;
 esac
 done

 # Verificar que hay paquetes para instalar
 if [${#packages[@]} -eq 0]; then
 log_error "No se especificaron paquetes"
 show_help
 exit 1
 fi

 # Iniciar log
 log_info "=== Instalación de Dotfiles ==="
 log_info "Directorio: $DOTFILES"
 log_info "Paquetes: ${packages[*]}"

 # Verificar dependencias
 check_dependencies

 # Cambiar a dotfiles directory
 cd "$DOTFILES" || exit 1

 # Dry run si se especificó
 if ["$dry_run" = true]; then
 log_info "=== DRY RUN ==="
 for package in "${packages[@]}"; do
 log_info "Simulating: $package"
 stow -nv "$package" || true
 done
 exit 0
 fi

 # Instalar paquetes
 local success=0
 local failed=0

 for package in "${packages[@]}"; do
 if stow_package "$package" "$force"; then
 ((success++))
 else
 ((failed++))
 fi
 done

 # Resumen
 log_info ""
 log_info "=== Resumen ==="
 log_info "Exitosos: $success"
 if [$failed -gt 0]; then
 log_warn "Fallidos: $failed"
 fi

 if [-d "$BACKUP_DIR"]; then
 log_info "Backups en: $BACKUP_DIR"
 fi

 log_info "Log completo en: $LOG_FILE"
}

Ejecutar
main "$@"
13.2 Script 2: update.sh
#!/bin/bash
~/dotfiles/update.sh

set -e

DOTFILES="$HOME/dotfiles"

cd "$DOTFILES"

echo "🔄 Actualizando dotfiles..."

Pull latest changes
git pull origin main

Restow todos los paquetes instalados
for package in */; do
 package=${package%/}

 # Verificar si está stowed
 if find "$HOME" -maxdepth 2 -type l -lname "*$DOTFILES/$package/*" 2>/dev/null | grep -q .; then
 echo "↻ Restowing $package..."
 stow -R "$package"
 fi
done

echo "✓ Actualización completa!"
13.3 Script 3: check.sh
#!/bin/bash
~/dotfiles/check.sh

DOTFILES="$HOME/dotfiles"

echo "📋 Estado de paquetes:"
echo "===================="

cd "$DOTFILES"

for package in */; do
 package=${package%/}

 if ["$package" = ".git"]; then
 continue
 fi

 # Buscar primer archivo del paquete
 first_file=$(find "$package" -type f -o -type l | head -1)

 if [-z "$first_file"]; then
 echo "⚠️ $package (vacío)"
 continue
 fi

 # Convertir a path en HOME
 home_path="$HOME/${first_file#$package/}"

 if [-L "$home_path"]; then
 target=$(readlink "$home_path")
 if [["$target" == *"$DOTFILES/$package"*]]; then
 echo "✅ $package"
 else
 echo "⚠️ $package (symlink apunta a: $target)"
 fi
 elif [-e "$home_path"]; then
 echo "❌ $package (existe pero no es symlink)"
 else
 echo "❌ $package (no instalado)"
 fi
done

Verificar symlinks rotos
echo ""
echo "🔗 Verificando symlinks rotos..."
broken_links=$(find "$HOME" -maxdepth 3 -xtype l -lname "*$DOTFILES/*" 2>/dev/null)

if [-z "$broken_links"]; then
 echo "✅ No hay symlinks rotos"
else
 echo "⚠️ Symlinks rotos encontrados:"
 echo "$broken_links"
fi
13.4 Script 4: clean.sh
#!/bin/bash
~/dotfiles/clean.sh

DOTFILES="$HOME/dotfiles"

echo "🧹 Limpiando symlinks huérfanos..."

Encontrar symlinks rotos que apuntan a dotfiles
find "$HOME" -maxdepth 3 -xtype l -lname "*$DOTFILES/*" 2>/dev/null | while read -r broken_link; do
 echo "Eliminando: $broken_link"
 rm "$broken_link"
done

echo "✓ Limpieza completa!"
14. Casos de Uso Prácticos
14.1 Caso 1: Crear Dotfiles desde Cero (Primera Vez)
Escenario: Nunca has usado Stow, quieres empezar desde cero organizando tus configuraciones.
Objetivo: Crear estructura de dotfiles, migrar configs existentes, versionar con Git.
14.1.1 Paso 1: Preparación
1.1 Instalar herramientas necesarias
sudo pacman -S stow git zsh starship # Arch/Archcraft
o
sudo apt install stow git zsh # Kubuntu/Debian

1.2 Verificar instalación
stow --version
git --version

1.3 Crear directorio para dotfiles
mkdir -p ~/dotfiles
cd ~/dotfiles

1.4 Inicializar Git
git init
git branch -M main

1.5 Configurar Git (si no está configurado)
git config user.name "Edison Achalma"
git config user.email "achalmaedison@gmail.com"
14.1.2 Paso 2: Crear Estructura de Paquetes
Crear paquetes para cada aplicación
cd ~/dotfiles

Git
mkdir -p git
Shell (Zsh)
mkdir -p shell
Terminal (Konsole)
mkdir -p terminal
Editor (VSCode)
mkdir -p vscode
KDE
mkdir -p kde
14.1.3 Paso 3: Migrar Configuraciones Existentes
3.1 Git (.gitconfig):
Verificar que existe
ls -la ~/.gitconfig

Mover al paquete
mv ~/.gitconfig git/

Verificar
ls -la git/.gitconfig
3.2 Shell (Zsh):
Crear estructura
mkdir -p shell

Mover archivos
mv ~/.zshrc shell/
mv ~/.zshenv shell/ 2>/dev/null || true # Si existe

Si tienes starship
mv ~/.config/starship.toml shell/ 2>/dev/null || true

Verificar
tree shell/
shell/
├── .zshrc
└── .zshenv
3.3 Terminal (Konsole):
Crear estructura que replica HOME
mkdir -p terminal/.config

Mover config de Konsole
mv ~/.config/konsolerc terminal/.config/

Si tienes perfiles personalizados
cp -r ~/.local/share/konsole terminal/.local/share/ 2>/dev/null || true

Verificar
tree terminal/
terminal/
└── .config/
└── konsolerc
3.4 VSCode:
Crear estructura
mkdir -p vscode/.config/Code/User

Mover settings
mv ~/.config/Code/User/settings.json vscode/.config/Code/User/
mv ~/.config/Code/User/keybindings.json vscode/.config/Code/User/

Snippets
mv ~/.config/Code/User/snippets vscode/.config/Code/User/ 2>/dev/null || true

Verificar
tree vscode/.config/Code/User/
3.5 KDE Plasma:
Crear estructura
mkdir -p kde/.config

Mover configuraciones principales
mv ~/.config/kdeglobals kde/.config/
mv ~/.config/dolphinrc kde/.config/
mv ~/.config/kwinrc kde/.config/
mv ~/.config/plasmarc kde/.config/
mv ~/.config/plasma-org.kde.plasma.desktop-appletsrc kde/.config/
mv ~/.config/mimeapps.list kde/.config/

Verificar
ls kde/.config/
14.1.4 Paso 4: Crear Ignore Lists
4.1 Global ignore:
cat > ~/.stow-global-ignore << 'EOF'
Backups
.*~
.*\.bak
.*\.old
.*\.orig
.*\.swp

Historia
\.zsh_history
\.bash_history

Cache
\.cache
__pycache__

Sistema
\.DS_Store
Thumbs\.db

Git
\.git
\.gitignore

Documentación
^/README.*
^/LICENSE.*
EOF
4.2 Ignore por paquete (shell):
cat > shell/.stow-local-ignore << 'EOF'
Historia (datos sensibles)
^/\.zsh_history
^/\.bash_history

Cache compilado
\.zcompdump
EOF
4.3 Ignore para VSCode:
cat > vscode/.stow-local-ignore << 'EOF'
Cache y logs
^/\.config/Code/CachedData/
^/\.config/Code/logs/
^/\.config/Code/User/workspaceStorage/

Backups automáticos
^/\.config/Code/Backups/
EOF
14.1.5 Paso 5: Crear .gitignore
cat > .gitignore << 'EOF'
==
BACKUPS
==
*~
*.bak
*.old
*.orig
*.swp
*.swo

==
DATOS SENSIBLES
==
Historia de shells
**/.zsh_history
**/.bash_history

SSH keys
**/.ssh/id_*
**/.ssh/*.pem

Credenciales
.netrc
.authinfo

==
CACHE Y TEMPORALES
==
**/.cache/
**/__pycache__/
*.pyc
.zcompdump*

==
STOW
==
.stow

==
LOGS
==
**/*.log
*.log

==
SISTEMA
==
.DS_Store
Thumbs.db
desktop.ini
EOF
14.1.6 Paso 6: Crear .stowrc
cat > .stowrc << 'EOF'
Target es siempre HOME
--target=$HOME

Ignorar archivos comunes
--ignore='^\.git'
--ignore='^README.*'
--ignore='^LICENSE.*'
--ignore='\.gitignore$'
--ignore='.*\.swp$'
--ignore='.*~$'
--ignore='^install\.sh$'
--ignore='^\.stowrc$'
EOF
14.1.7 Paso 7: Instalar con Stow (Primera Vez)
Navegar a dotfiles
cd ~/dotfiles

Dry run primero para cada paquete
stow -nv git
stow -nv shell
stow -nv terminal
stow -nv vscode
stow -nv kde

Si todo OK, instalar realmente
stow git shell terminal vscode kde

Verificar symlinks
ls -la ~/.gitconfig
lrwxrwxrwxgitconfig -> dotfiles/git/.gitconfig

ls -la ~/.zshrc
lrwxrwxrwxzshrc -> dotfiles/shell/.zshrc

ls -la ~/.config/konsolerc
lrwxrwxrwx ... konsolerc -> ../dotfiles/terminal/.config/konsolerc
14.1.8 Paso 8: Verificar que Todo Funciona
8.1 Verificar Git
git config --list | head -5

8.2 Verificar Zsh
cat ~/.zshrc | head -10

8.3 Verificar VSCode
cat ~/.config/Code/User/settings.json | head -10

8.4 Abrir aplicaciones para probar
code # VSCode debe cargar tu config
konsole # Konsole debe tener tu configuración
14.1.9 Paso 9: Crear Scripts de Ayuda
9.1 Script de instalación:
cat > install.sh << 'EOF'
#!/bin/bash
set -e

DOTFILES="$HOME/dotfiles"

echo "🚀 Instalando dotfiles..."

cd "$DOTFILES"

Lista de paquetes
PACKAGES=(
 "git"
 "shell"
 "terminal"
 "vscode"
 "kde"
)

Instalar cada paquete
for pkg in "${PACKAGES[@]}"; do
 echo "📦 Instalando $pkg..."
 stow "$pkg"
done

echo "✅ ¡Instalación completa!"
EOF

chmod +x install.sh
9.2 Script de verificación:
cat > check.sh << 'EOF'
#!/bin/bash

DOTFILES="$HOME/dotfiles"

echo "📋 Verificando dotfiles..."
echo ""

cd "$DOTFILES"

for pkg in */; do
 pkg=${pkg%/}

 # Buscar primer archivo
 first_file=$(find "$pkg" -type f | head -1)

 if [-z "$first_file"]; then
 continue
 fi

 # Path en HOME
 home_path="$HOME/${first_file#$pkg/}"

 if [-L "$home_path"]; then
 echo "✅ $pkg"
 else
 echo "❌ $pkg (no instalado)"
 fi
done
EOF

chmod +x check.sh
14.1.10 Paso 10: Crear Repositorio en GitHub
10.1 Agregar todo a Git
cd ~/dotfiles
git add .

10.2 Commit inicial
git commit -m "Initial commit: Estructura básica de dotfiles

- Git configuration
- Zsh/Starship setup
- Konsole terminal config
- VSCode settings
- KDE Plasma configuration"

10.3 Crear repo en GitHub (vía navegador o gh CLI)
Opción A: Navegador
Ve a https://github.com/new
Nombre: .dotfiles
Descripción: "Dotfiles para Archcraft/Kubuntu con Stow"
Público o Privado
NO inicializar con README (ya lo tienes)

Opción B: GitHub CLI
gh repo create .dotfiles --public --source=. --remote=origin

10.4 Agregar remote y push
git remote add origin https://github.com/achalmaedison/.dotfiles.git
git push -u origin main
14.1.11 Paso 11: Crear README.md
cat > README.md << 'EOF'

Dotfiles

Configuraciones personales para Archcraft/Kubuntu gestionadas con GNU Stow.

Estructura

``
~/dotfiles/
├── git/ # Git config
├── shell/ # Zsh + Starship
├── terminal/ # Konsole
├── vscode/ # Visual Studio Code
└── kde/ # KDE Plasma
``

Instalación

``bash
Clonar
git clone https://github.com/achalmaedison/.dotfiles.git ~/dotfiles

Instalar Stow
sudo pacman -S stow # Arch
o
sudo apt install stow # Debian/Ubuntu

Instalar todo
cd ~/dotfiles
./install.sh

O instalar selectivo
stow git shell terminal
``

Actualizar

``bash
cd ~/dotfiles
git pull
stow -R */
``

Requisitos

- stow
- git
- zsh
- starship (opcional)
- VSCode (opcional)
- KDE Plasma (opcional)
EOF

git add README.md
git commit -m "docs: Add README"
git push
14.2 Caso 2: Replicar Dotfiles en Laptop Nueva
Escenario: Acabas de comprar/instalar una laptop nueva con Archcraft y quieres replicar tu setup completo.
Objetivo: Clonar tu repo de dotfiles e instalar todo en la nueva máquina.
14.2.1 Paso 1: Preparar Nueva Máquina
1.1 Actualizar sistema (Archcraft/Arch)
sudo pacman -Syu

1.2 Instalar herramientas base
sudo pacman -S git stow zsh base-devel

1.3 Verificar HOME vacío (opcional)
ls -la ~/ | grep "^\." | wc -l
Deberías ver solo archivos básicos del sistema
14.2.2 Paso 2: Backup de Configs Existentes (Precaución)
2.1 Crear directorio de backup
mkdir -p ~/dotfiles-backup-$(date +%Y%m%d)
BACKUP_DIR=~/dotfiles-backup-$(date +%Y%m%d)

2.2 Backup de archivos que podrían existir
cp ~/.zshrc "$BACKUP_DIR/" 2>/dev/null || true
cp ~/.gitconfig "$BACKUP_DIR/" 2>/dev/null || true
cp -r ~/.config/Code "$BACKUP_DIR/" 2>/dev/null || true

echo "Backup guardado en: $BACKUP_DIR"
ls -la "$BACKUP_DIR"
14.2.3 Paso 3: Clonar Repositorio
3.1 Clonar tu repo
cd ~
git clone https://github.com/achalmaedison/.dotfiles.git dotfiles

3.2 Verificar contenido
cd dotfiles
ls -la

Deberías ver:
git/
shell/
terminal/
vscode/
kde/
install.sh
.gitignore
README.md
14.2.4 Paso 4: Revisar y Ajustar (Si Necesario)
4.1 Ver qué paquetes hay
ls -d */
git/ kde/ shell/ terminal/ vscode/

4.2 Ver estructura de un paquete
tree shell/
shell/
├── .zshrc
└── .zshenv

4.3 (Opcional) Editar configs antes de instalar
Por ejemplo, cambiar username en git
nano git/.gitconfig
14.2.5 Paso 5: Instalar Dependencias
5.1 Aplicaciones de tu setup
sudo pacman -S \
 zsh \
 starship \
 konsole \
 code \ # VSCode (si está en repos)
 plasma-desktop \
 dolphin \
 kate \
 okular

5.2 Si usas AUR (yay/paru)
VSCode desde AUR
yay -S visual-studio-code-bin

Starship (si no está en repos oficiales)
yay -S starship-bin

5.3 Verificar instalaciones
which zsh
which starship
which code
14.2.6 Paso 6: Dry Run (Simulación)
Navegar a dotfiles
cd ~/dotfiles

Simular instalación para ver qué pasaría
stow -nv git
stow -nv shell
stow -nv terminal
stow -nv vscode
stow -nv kde

Verificar que no hay errores
Si hay conflictos, verás warnings
14.2.7 Paso 7: Resolver Conflictos (Si Existen)
Si ves algo como:
WARNING! stowing shell would cause conflicts:
 * existing target is neither a link nor a directory: .zshrc
Resolver:
Opción A: Eliminar archivo existente
rm ~/.zshrc

Opción B: Mover a backup (más seguro)
mv ~/.zshrc ~/dotfiles-backup-$(date +%Y%m%d)/

Luego intentar stow nuevamente
stow -nv shell
14.2.8 Paso 8: Instalar Todo
Opción A: Con script (recomendado):
cd ~/dotfiles
./install.sh
Opción B: Manual:
cd ~/dotfiles

Instalar uno por uno
stow git
echo "✅ Git instalado"

stow shell
echo "✅ Shell instalado"

stow terminal
echo "✅ Terminal instalado"

stow vscode
echo "✅ VSCode instalado"

stow kde
echo "✅ KDE instalado"
Opción C: Todo de una vez:
cd ~/dotfiles
stow git shell terminal vscode kde
14.2.9 Paso 9: Verificar Instalación
9.1 Verificar symlinks creados
ls -la ~/.gitconfig
lrwxrwxrwxgitconfig -> dotfiles/git/.gitconfig

ls -la ~/.zshrc
lrwxrwxrwxzshrc -> dotfiles/shell/.zshrc

ls -la ~/.config/Code/User/settings.json
lrwxrwxrwx ... settings.json -> ../../../../dotfiles/vscode/.config/Code/User/settings.json

9.2 Usar script de verificación
cd ~/dotfiles
./check.sh
14.2.10 Paso 10: Configurar Shell
10.1 Cambiar shell a Zsh (si no lo es)
chsh -s /bin/zsh

10.2 Logout y login para aplicar
O simplemente:
exec zsh

10.3 Verificar que Zsh cargó tu config
echo $SHELL
/bin/zsh

Ver prompt (si usas starship)
starship --version
14.2.11 Paso 11: Instalar Dependencias Específicas
11.1 Extensiones de VSCode:
Si guardaste lista de extensiones
(Opción: guardar en dotfiles)
code --list-extensions > ~/dotfiles/vscode/extensions.txt

En nueva máquina:
while read -r ext; do
 code --install-extension "$ext"
done < ~/dotfiles/vscode/extensions.txt
11.2 Plugins de Zsh (si usas):
Oh-My-Zsh
sh -c "$(curl -fsSL https://raw.github.com/ohmyzsh/ohmyzsh/master/tools/install.sh)"

Zsh plugins (ejemplo: zsh-autosuggestions)
git clone https://github.com/zsh-users/zsh-autosuggestions \
 ~/.oh-my-zsh/custom/plugins/zsh-autosuggestions
11.3 Temas de KDE (si los tienes):
Si tienes temas personalizados en dotfiles
Instalarlos desde System Settings
14.2.12 Paso 12: Probar Todo
12.1 Git
git config --list | grep user
user.name=Edison Achalma
user.email=achalmaedison@gmail.com

12.2 Zsh
cat ~/.zshrc | head -5

12.3 VSCode
code
Debería cargar con tu configuración

12.4 Konsole
konsole
Debería usar tu configuración

12.5 KDE
Logout/login para ver cambios en KDE
14.2.13 Paso 13: Ajustes Finales
Si algo no funciona, hacer debug:

Ver qué apunta cada symlink
find ~ -maxdepth 2 -type l -ls | grep dotfiles

Si un symlink está roto:
stow -D paquete-con-problema
stow paquete-con-problema

Verificar logs
journalctl --user -xe | grep -i error
14.3 Caso 3: Actualizar Configs y Sincronizar
Escenario: Has estado usando tus dotfiles y has hecho cambios en tu máquina principal. Quieres sincronizar con GitHub y otras máquinas.
14.3.1 Paso 1: Identificar Cambios
1.1 Ver qué archivos cambiaron
cd ~/dotfiles
git status

Ejemplo de output:
modified: shell/.zshrc
modified: vscode/.config/Code/User/settings.json

1.2 Ver diferencias específicas
git diff shell/.zshrc
git diff vscode/.config/Code/User/settings.json

1.3 Ver todos los cambios
git diff
14.3.2 Paso 2: Probar Cambios Localmente
Si editaste configs directamente en HOME (a través de symlinks),
los cambios ya están en ~/dotfiles/

2.1 Verificar que todo funciona
source ~/.zshrc # Para shell
code # Abrir VSCode para verificar settings

2.2 Si hay problemas, revertir temporalmente
cd ~/dotfiles
git checkout -- shell/.zshrc # Revertir cambios
Probar de nuevo
14.3.3 Paso 3: Commit Cambios
cd ~/dotfiles

3.1 Agregar archivos modificados
git add shell/.zshrc
git add vscode/.config/Code/User/settings.json

O agregar todo:
git add -A

3.2 Ver qué se va a commitear
git status

3.3 Commit con mensaje descriptivo
git commit -m "chore(shell): Update Zsh aliases and PATH

- Add alias for git status
- Update PATH to include ~/.local/bin
- Remove deprecated exports"

git commit -m "feat(vscode): Enable format on save

- Set editor.formatOnSave to true
- Add Python formatting rules
- Update keybindings for terminal"
14.3.4 Paso 4: Push a GitHub
4.1 Push cambios
git push origin main

4.2 Verificar en GitHub
Ir a https://github.com/achalmaedison/.dotfiles
Deberías ver tus commits recientes
14.3.5 Paso 5: Actualizar Otras Máquinas
En laptop/otra máquina:
5.1 Pull cambios
cd ~/dotfiles
git pull origin main

5.2 Los symlinks reflejan cambios automáticamente!
cat ~/.zshrc # Ya tiene los cambios

5.3 Recargar configs
source ~/.zshrc # Shell
VSCode se recarga automáticamente

5.4 Si hay cambios en estructura (archivos nuevos/eliminados):
stow -R shell # Restow para actualizar symlinks
stow -R vscode
14.3.6 Paso 6: Manejar Conflictos (Si Existen)
Si modificaste el mismo archivo en dos máquinas:
cd ~/dotfiles
git pull origin main

Si hay conflicto:
CONFLICT (content): Merge conflict in shell/.zshrc

6.1 Ver conflicto
git status
both modified: shell/.zshrc

6.2 Editar archivo
nano shell/.zshrc

Verás marcadores:
<<<<<<< HEAD
(tu cambio local)
=======
(cambio de GitHub)
>>>>>>> origin/main

6.3 Resolver manualmente, eliminar marcadores

6.4 Marcar como resuelto
git add shell/.zshrc
git commit -m "merge: Resolve conflict in .zshrc"
git push
14.4 Caso 4: Agregar Nueva Aplicación (Kate Editor)
Escenario: Instalaste Kate y quieres agregar su configuración a tus dotfiles.
14.4.1 Paso 1: Usar Kate y Configurar
1.1 Instalar Kate
sudo pacman -S kate

1.2 Abrir y configurar
kate

Configurar:
- Settings → Configure Kate
- Cambiar tema, shortcuts, plugins, etc.
- Cerrar Kate (configs se guardan automáticamente)
14.4.2 Paso 2: Localizar Archivos de Config
2.1 Archivos de configuración están en ~/.config/
ls -la ~/.config/ | grep kate
drwxr-xr-x - achalmaedison kate/

2.2 Ver qué hay dentro
ls -la ~/.config/kate/
katerc
externaltools/
formatting/
lspclient/

2.3 También puede haber datos en ~/.local/share/
ls -la ~/.local/share/ | grep kate
14.4.3 Paso 3: Crear Paquete Kate
3.1 Crear estructura que replica HOME
cd ~/dotfiles
mkdir -p kate/.config

3.2 Copiar configs (NO mover todavía)
cp -r ~/.config/kate kate/.config/

3.3 También copiar datos locales si existen
mkdir -p kate/.local/share
cp -r ~/.local/share/kate kate/.local/share/ 2>/dev/null || true

3.4 Verificar estructura
tree kate/
kate/
├── .config/
│ └── kate/
│ ├── katerc
│ ├── externaltools/
│ ├── formatting/
│ └── lspclient/
└── .local/
└── share/
└── kate/
14.4.4 Paso 4: Crear Ignore List para Kate
Crear ignore para archivos que no queremos versionar
cat > kate/.stow-local-ignore << 'EOF'
Sesiones y cache
^/\.config/kate/sessions/
^/\.local/share/kate/.*\.cache

Logs
^/\.config/kate/.*\.log

Archivos temporales
^/\.config/kate/.*\.tmp
^/\.config/kate/.*\.swp
EOF
14.4.5 Paso 5: Test Stow (Dry Run)
cd ~/dotfiles

5.1 Ver qué haría stow
stow -nv kate

Deberías ver algo como:
LINK: .config/kate => dotfiles/kate/.config/kate
14.4.6 Paso 6: Hacer Backup y Eliminar Original
6.1 Backup por seguridad
cp -r ~/.config/kate ~/backup-kate-$(date +%Y%m%d)

6.2 Eliminar original
rm -rf ~/.config/kate
rm -rf ~/.local/share/kate # Si copiaste esto también

6.3 Verificar que se eliminó
ls ~/.config/ | grep kate
(no debería aparecer nada)
14.4.7 Paso 7: Stow Kate
cd ~/dotfiles

7.1 Instalar con stow
stow kate

7.2 Verificar symlinks
ls -la ~/.config/ | grep kate
lrwxrwxrwx - achalmaedison kate -> ../dotfiles/kate/.config/kate

7.3 Verificar que Kate funciona
kate
Debería abrir con tu configuración
14.4.8 Paso 8: Versionar con Git
cd ~/dotfiles

8.1 Agregar al staging
git add kate/

8.2 Commit
git commit -m "feat(kate): Add Kate editor configuration

- Custom keybindings
- LSP configuration
- Theme and appearance settings
- External tools setup"

8.3 Push
git push origin main
14.4.9 Paso 9: Actualizar README
cd ~/dotfiles

Agregar Kate a la lista de paquetes
nano README.md

Agregar:
- kate/ # Kate editor

Commit cambio
git add README.md
git commit -m "docs: Add Kate to README"
git push
14.4.10 Paso 10: Actualizar Script de Instalación
Si tienes install.sh, agregar kate
nano install.sh

Agregar "kate" a la lista de PACKAGES:
PACKAGES=(
"git"
"shell"
"terminal"
"vscode"
"kde"
"kate" # <-- Agregar esto
)

git add install.sh
git commit -m "chore(scripts): Add kate to install script"
git push
14.5 Caso 5: Migrar de Kubuntu a Archcraft
Escenario: Usabas Kubuntu, ahora instalaste Archcraft. Quieres migrar tus dotfiles pero adaptándolos.
14.5.1 Paso 1: Evaluar Diferencias
1.1 En tu Kubuntu original, ver qué tienes
cd ~/dotfiles
ls -d */

Ejemplo:
git/ shell/ terminal/ vscode/ kde/ digikam/ okular/ ...

1.2 Identificar qué es compatible con Archcraft
✅ Compatible: git, shell, vscode
⚠️ Adaptar: kde (Archcraft puede usar i3/bspwm)
❌ No necesario: apps específicas de Kubuntu
14.5.2 Paso 2: En Archcraft Nueva
2.1 Instalar Stow
sudo pacman -S stow git

2.2 Clonar dotfiles
cd ~
git clone https://github.com/achalmaedison/.dotfiles.git dotfiles
14.5.3 Paso 3: Crear Branch para Archcraft
cd ~/dotfiles

3.1 Crear branch específica
git checkout -b archcraft-setup

3.2 Ver qué paquetes hay
ls -d */
14.5.4 Paso 4: Instalar Paquetes Universales
cd ~/dotfiles

4.1 Paquetes que funcionan en cualquier distro
stow git
stow shell
stow terminal # Si Archcraft usa Konsole, sino adaptar
14.5.5 Paso 5: Adaptar o Crear Nuevos Paquetes
5.1 Window Manager (Si Archcraft usa i3/bspwm):
Crear nuevo paquete para i3 (ejemplo)
mkdir -p i3/.config/i3

Configurar i3
i3-config-wizard
O copiar config existente

Mover config al paquete
mv ~/.config/i3/config i3/.config/i3/

Stow
stow i3
5.2 Terminal (Si Archcraft usa otro terminal):
Supongamos que Archcraft usa Alacritty en vez de Konsole

Crear paquete
mkdir -p alacritty/.config/alacritty

Config de Alacritty
cat > alacritty/.config/alacritty/alacritty.yml << 'EOF'
Alacritty configuration
font:
 size: 11.0
 normal:
 family: JetBrains Mono

window:
 opacity: 0.95

colors:
 # Tu esquema de colores...
EOF

Stow
stow alacritty
5.3 Polybar (Si Archcraft lo usa):
mkdir -p polybar/.config/polybar

Copiar config de Archcraft default
cp /etc/polybar/config polybar/.config/polybar/

Personalizar
nano polybar/.config/polybar/config

Stow
stow polybar
14.5.6 Paso 6: No Instalar Paquetes Incompatibles
NO hacer stow de paquetes específicos de Kubuntu/KDE:
- kde/
- plasma-org.kde.plasma.desktop-appletsrc
- etc.

Estos causarían errores en Archcraft
14.5.7 Paso 7: Commit Cambios
cd ~/dotfiles

Agregar nuevos paquetes
git add i3/ alacritty/ polybar/

Commit en branch archcraft
git commit -m "feat(archcraft): Add i3, Alacritty, Polybar configs

- i3 window manager configuration
- Alacritty terminal setup
- Polybar panel configuration"

Push branch
git push origin archcraft-setup
14.5.8 Paso 8: Estrategia de Branches
Opción A: Mantener branches separadas:
Branch main: Para Kubuntu
Branch archcraft-setup: Para Archcraft

Puedes hacer cherry-pick de commits específicos:
git checkout main
git cherry-pick <commit-hash> # Traer cambio específico de otra branch
Opción B: Usar estructura de directorios:
Reorganizar dotfiles:
~/dotfiles/
├── common/ # Configs universales
│ ├── git/
│ ├── shell/
│ └── vscode/
├── kubuntu/ # Específicos de Kubuntu
│ ├── kde/
│ └── konsole/
└── archcraft/ # Específicos de Archcraft
 ├── i3/
 ├── alacritty/
 └── polybar/

Instalar según distro:
cd ~/dotfiles/common && stow */
cd ~/dotfiles/archcraft && stow */
14.5.9 Paso 9: Script de Instalación por Distro
cat > install-arch.sh << 'EOF'
#!/bin/bash
Install script para Archcraft

DOTFILES="$HOME/dotfiles"

echo "🚀 Instalando dotfiles para Archcraft..."

Common packages
cd "$DOTFILES/common"
stow git shell vscode

Archcraft-specific
cd "$DOTFILES/archcraft"
stow i3 alacritty polybar rofi

echo "✅ ¡Instalación completa!"
EOF

chmod +x install-arch.sh
14.5.10 Paso 10: Mantener Ambos Sistemas
Cuando hagas cambios en configs comunes (git, shell, vscode):

1. Hacer cambio en cualquier máquina
cd ~/dotfiles
nano common/shell/.zshrc

2. Commit
git add common/shell/.zshrc
git commit -m "chore(shell): Update aliases"

3. Push
git push origin main

4. En otra máquina (Kubuntu o Archcraft):
git pull origin main
Los symlinks se actualizan automáticamente
14.6 Caso 6: Probar Nueva Configuración Sin Romper
Escenario: Quieres probar una nueva configuración de Neovim sin afectar tu setup actual.
14.6.1 Paso 1: Crear Branch Experimental
cd ~/dotfiles

1.1 Crear branch
git checkout -b experiment/nvim-lazyvim

1.2 Verificar que estás en la branch
git branch
* experiment/nvim-lazyvim
main
14.6.2 Paso 2: Crear Paquete Alternativo
2.1 Crear nuevo paquete con nombre distinto
mkdir -p nvim-lazy/.config

2.2 Instalar LazyVim (ejemplo)
git clone https://github.com/LazyVim/starter nvim-lazy/.config/nvim

2.3 Estructura
tree nvim-lazy/.config/nvim/ -L 1
14.6.3 Paso 3: Desinstalar Neovim Actual
3.1 Unstow config actual (si existe)
cd ~/dotfiles
stow -D nvim 2>/dev/null || true

3.2 Verificar que se eliminó symlink
ls -la ~/.config/ | grep nvim
No debería aparecer nada
14.6.4 Paso 4: Instalar Nueva Config
4.1 Stow nueva config
stow nvim-lazy

4.2 Verificar symlink
ls -la ~/.config/nvim
lrwxrwxrwx - achalmaedison nvim -> ../../dotfiles/nvim-lazy/.config/nvim
14.6.5 Paso 5: Probar
5.1 Abrir Neovim
nvim

LazyVim se instalará automáticamente
Probar todas las features

5.2 Usar por varios días
Evaluar si te gusta
14.6.6 Paso 6: Decidir Qué Hacer
Opción A: Mantener nueva config (si te gustó):
cd ~/dotfiles

1. Eliminar config vieja
rm -rf nvim/ # O hacer backup

2. Renombrar nueva
mv nvim-lazy nvim

3. Restow
stow -R nvim

4. Commit
git add .
git commit -m "refactor(nvim): Switch to LazyVim configuration"

5. Merge a main
git checkout main
git merge experiment/nvim-lazyvim

6. Push
git push origin main

7. Eliminar branch experimental
git branch -d experiment/nvim-lazyvim
Opción B: Volver a config anterior (si no te gustó):
cd ~/dotfiles

1. Checkout a main
git checkout main

2. Unstow experimental
stow -D nvim-lazy

3. Restow original
stow nvim

4. Eliminar paquete experimental
rm -rf nvim-lazy/

5. Eliminar branch
git branch -D experiment/nvim-lazyvim
Opción C: Mantener ambas (para casos específicos):
Tener dos configs de Neovim:
~/dotfiles/
├── nvim/ # Config principal
└── nvim-lazy/ # Config alternativa

Alias en shell para cambiar:
alias nvim-main='stow -D nvim-lazy && stow nvim && nvim'
alias nvim-lazy='stow -D nvim && stow nvim-lazy && nvim'
14.7 Caso 7: Sincronizar Múltiples Máquinas en Tiempo Real
Escenario: Trabajas en 3 máquinas (desktop, laptop, servidor) y quieres mantener dotfiles sincronizados.
14.7.1 Configuración Inicial (Una Vez)
En cada máquina:

1. Clonar dotfiles
cd ~
git clone https://github.com/achalmaedison/.dotfiles.git dotfiles

2. Instalar
cd dotfiles
./install.sh

3. Configurar Git con pull automático (opcional)
git config pull.rebase true # Rebase en lugar de merge
14.7.2 Workflow Diario
Máquina A (Desktop) - Hacer Cambios:
1. Editar configs normalmente
nano ~/.zshrc # Edita a través del symlink

2. Commit y push
cd ~/dotfiles
git add shell/.zshrc
git commit -m "chore(shell): Add new alias for docker"
git push origin main
Máquina B (Laptop) - Recibir Cambios:
1. Pull cambios
cd ~/dotfiles
git pull origin main

2. Los symlinks se actualizan automáticamente!
cat ~/.zshrc # Ya tiene el cambio

3. Recargar shell
source ~/.zshrc
O
exec zsh
Máquina C (Servidor) - Recibir Cambios:
Mismo proceso
cd ~/dotfiles
git pull origin main
source ~/.zshrc
14.7.3 Automatizar con Cron (Opcional)
Crear script de sync
cat > ~/dotfiles/sync.sh << 'EOF'
#!/bin/bash
cd "$HOME/dotfiles"

Pull cambios silenciosamente
git pull origin main --quiet

Log
echo "$(date): Dotfiles sincronizados" >> ~/dotfiles/sync.log
EOF

chmod +x ~/dotfiles/sync.sh

Agregar a crontab (sync cada hora)
crontab -e

Agregar línea:
0 * * * * $HOME/dotfiles/sync.sh
14.7.4 Manejar Conflictos Automáticamente
Script más robusto
cat > ~/dotfiles/sync.sh << 'EOF'
#!/bin/bash
cd "$HOME/dotfiles"

Stash cambios locales si existen
git stash

Pull
git pull origin main --quiet

Reapply stash
git stash pop

Si hay conflictos, notificar
if [$? -ne 0]; then
 notify-send "Dotfiles" "Conflicto detectado, revisar manualmente"
fi
EOF
14.7.5 Usar Git Hooks (Avanzado)
Pre-commit hook para validar antes de commit
cat > ~/dotfiles/.git/hooks/pre-commit << 'EOF'
#!/bin/bash

Verificar que no hay datos sensibles
if git diff --cached | grep -i "password\|secret\|token"; then
 echo "ERROR: Posible dato sensible detectado!"
 exit 1
fi

exit 0
EOF

chmod +x ~/dotfiles/.git/hooks/pre-commit
14.8 Caso 8: Compartir Dotfiles con Equipo/Lab
Escenario: Trabajas en un lab con múltiples usuarios y quieren compartir configuraciones base.
14.8.1 Paso 1: Crear Repo de Equipo
En GitHub, crear repo:
Nombre: lab-dotfiles
Acceso: Privado/Público según necesidad

Clonar
git clone https://github.com/lab/.lab-dotfiles.git ~/lab-dotfiles
14.8.2 Paso 2: Estructura Multi-Usuario
cd ~/lab-dotfiles

Crear estructura
mkdir -p {common,users}

Common: Configs compartidas
mkdir -p common/{git,shell,terminal}

Users: Configs personales
mkdir -p users/{alice,bob,carlos}
14.8.3 Paso 3: Setup Común
Git config compartido (sin user.name/email)
cat > common/git/.gitconfig << 'EOF'
[core]
 editor = nano
 autocrlf = input

[alias]
 st = status
 co = checkout
 br = branch

[push]
 default = simple
EOF

Shell común
cat > common/shell/.zshrc << 'EOF'
Shared Zsh configuration for Lab

Common aliases
alias ll='ls -lah'
alias ..='cd ..'

Lab-specific paths
export LAB_DATA="/data/lab"
export LAB_TOOLS="/opt/lab-tools"

Source user-specific config if exists
[-f ~/.zshrc.local] && source ~/.zshrc.local
EOF
14.8.4 Paso 4: Configs Personales
Usuario Alice
cat > users/alice/.zshrc.local << 'EOF'
Alice's personal config

export EDITOR=nvim

alias mydata='cd /data/lab/alice'
EOF

Usuario Bob
cat > users/bob/.zshrc.local << 'EOF'
Bob's personal config

export EDITOR=vim

alias mydata='cd /data/lab/bob'
EOF
14.8.5 Paso 5: Script de Instalación
cat > install-lab.sh << 'EOF'
#!/bin/bash

USERNAME="$1"

if [-z "$USERNAME"]; then
 echo "Uso: $0 <username>"
 echo "Ejemplo: $0 alice"
 exit 1
fi

DOTFILES="$HOME/lab-dotfiles"

Instalar común
cd "$DOTFILES/common"
stow git shell terminal

Instalar personal del usuario
if [-d "$DOTFILES/users/$USERNAME"]; then
 cd "$DOTFILES/users/$USERNAME"
 stow .
 echo "✅ Configs de $USERNAME instaladas"
else
 echo "⚠️ No hay configs personales para $USERNAME"
fi

echo "✅ Instalación completa para $USERNAME"
EOF

chmod +x install-lab.sh
14.8.6 Paso 6: Cada Usuario Instala
Usuario Alice:
cd ~/lab-dotfiles
./install-lab.sh alice

Usuario Bob:
cd ~/lab-dotfiles
./install-lab.sh bob
14.8.7 Paso 7: Actualizar Configs Compartidas
Cualquier usuario puede actualizar common/

1. Modificar
nano ~/lab-dotfiles/common/shell/.zshrc

2. Commit
cd ~/lab-dotfiles
git add common/shell/.zshrc
git commit -m "feat(shell): Add lab-wide utility function"

3. Push
git push origin main

4. Otros usuarios pull
git pull origin main
Cambios se aplican automáticamente via symlinks
14.8.8 Paso 8: Usuarios Agregan Sus Configs
Bob quiere agregar su config de Neovim

1. Crear su directorio personal
mkdir -p ~/lab-dotfiles/users/bob/.config

2. Copiar config
cp -r ~/.config/nvim ~/lab-dotfiles/users/bob/.config/

3. Commit (solo su carpeta)
cd ~/lab-dotfiles
git add users/bob/.config/nvim
git commit -m "feat(bob): Add Neovim configuration"
git push

Otros usuarios no se afectan
14.9 Caso 9: Migrar de Sistema Manual a Stow
Escenario: Tienes dotfiles en GitHub pero SIN Stow (todos en raíz del repo). Quieres migrar a Stow.
14.9.1 Estado Inicial
Tu repo actual (sin Stow):
~/dotfiles/
├── .gitconfig
├── .zshrc
├── .zshenv
├── nvim/
│ └── init.lua
├── konsolerc
└── settings.json

Estructura plana, difícil de gestionar
14.9.2 Paso 1: Backup Completo
1. Backup de dotfiles actuales
cp -r ~/dotfiles ~/dotfiles-backup-$(date +%Y%m%d)

2. Backup de HOME
mkdir -p ~/home-backup
cp ~/.zshrc ~/home-backup/
cp ~/.gitconfig ~/home-backup/
etc...
14.9.3 Paso 2: Crear Nueva Estructura
cd ~/dotfiles

Crear directorios de paquetes
mkdir -p git shell nvim terminal vscode
14.9.4 Paso 3: Reorganizar Archivos
cd ~/dotfiles

Git
mv .gitconfig git/

Shell
mv .zshrc shell/
mv .zshenv shell/

Neovim (crear estructura correcta)
mkdir -p nvim/.config
mv nvim/ nvim/.config/nvim/

Terminal
mkdir -p terminal/.config
mv konsolerc terminal/.config/

VSCode
mkdir -p vscode/.config/Code/User
mv settings.json vscode/.config/Code/User/
14.9.5 Paso 4: Verificar Nueva Estructura
Debería verse así:
tree -L 3 ~/dotfiles/

~/dotfiles/
├── git/
│ └── .gitconfig
├── shell/
│ ├── .zshrc
│ └── .zshenv
├── nvim/
│ └── .config/
│ └── nvim/
├── terminal/
│ └── .config/
│ └── konsolerc
└── vscode/
└── .config/
└── Code/
└── User/
└── settings.json
14.9.6 Paso 5: Eliminar Symlinks/Archivos Viejos de HOME
Eliminar configs de HOME (los vamos a recrear con Stow)
rm ~/.gitconfig
rm ~/.zshrc
rm ~/.zshenv
rm -rf ~/.config/nvim
rm ~/.config/konsolerc
rm ~/.config/Code/User/settings.json
14.9.7 Paso 6: Instalar con Stow
cd ~/dotfiles

Dry run primero
stow -nv git shell nvim terminal vscode

Si todo OK, instalar
stow git shell nvim terminal vscode

Verificar
ls -la ~/.gitconfig
ls -la ~/.zshrc
ls -la ~/.config/nvim
14.9.8 Paso 7: Commit Nueva Estructura
cd ~/dotfiles

Stage todo
git add -A

Ver cambios
git status

Commit
git commit -m "refactor: Migrate to GNU Stow structure

BREAKING CHANGE: Repository structure changed to use Stow

- Organized configs into packages (git, shell, nvim, etc.)
- Each package replicates HOME directory structure
- Use 'stow <package>' to install

Migration guide:
1. stow -D * (if already installed)
2. stow git shell nvim terminal vscode"

Push
git push origin main
14.9.9 Paso 8: Actualizar README
cat > README.md << 'EOF'
Dotfiles (Stow-managed)

Personal configurations managed with GNU Stow.

Structure

``
~/dotfiles/
├── git/ # Git config
├── shell/ # Zsh
├── nvim/ # Neovim
├── terminal/ # Konsole
└── vscode/ # VSCode
``

Installation

``bash
Install Stow
sudo pacman -S stow

Clone
git clone https://github.com/user/dotfiles.git ~/dotfiles

Install all
cd ~/dotfiles
stow */

Or selective
stow git shell nvim
``

Update

``bash
cd ~/dotfiles
git pull
stow -R */
``

EOF

git add README.md
git commit -m "docs: Update README for Stow"
git push
14.9.10 Paso 9: Crear Scripts
install.sh
cat > install.sh << 'EOF'
#!/bin/bash
cd "$HOME/dotfiles"
stow git shell nvim terminal vscode
echo "✅ Dotfiles installed"
EOF

chmod +x install.sh
git add install.sh
git commit -m "chore: Add install script"
git push
14.9.11 Paso 10: Limpiar Historial de Git (Opcional)
Si tu repo era muy grande con historia antigua,
puedes limpiarlo:

cd ~/dotfiles

Crear orphan branch
git checkout --orphan latest_branch

Add all files
git add -A

Commit
git commit -m "refactor: Fresh start with Stow structure"

Delete main
git branch -D main

Rename current branch to main
git branch -m main

Force push
git push -f origin main
14.10 Caso 10: Setup para Desarrollo Multi-Proyecto
Escenario: Trabajas en múltiples proyectos (Python, Web, Latex) y quieres configs específicas por proyecto.
14.10.1 Estructura de Dotfiles
~/dotfiles/
├── common/ # Común a todo
│ ├── git/
│ └── shell/
├── python-dev/ # Python development
│ ├── nvim/
│ └── vscode/
├── web-dev/ # Web development
│ ├── nvim/
│ └── vscode/
└── latex-writing/ # Academic writing
 ├── nvim/
 └── texstudio/
14.10.2 Paso 1: Crear Estructura
cd ~/dotfiles

Común
mkdir -p common/{git,shell}

Python dev
mkdir -p python-dev/{nvim,vscode}

Web dev
mkdir -p web-dev/{nvim,vscode}

LaTeX
mkdir -p latex-writing/{nvim,texstudio}
14.10.3 Paso 2: Configs Comunes
Git (igual para todos)
cat > common/git/.gitconfig << 'EOF'
[user]
 name = Edison Achalma
 email = achalmaedison@gmail.com

[core]
 editor = nvim
EOF

Shell base
cat > common/shell/.zshrc << 'EOF'
Common shell config

Aliases
alias gs='git status'
alias ll='ls -lah'

Load project-specific config
[-f ~/.zshrc.project] && source ~/.zshrc.project
EOF
14.10.4 Paso 3: Configs Específicas por Proyecto
Python Development:
Neovim para Python
cat > python-dev/nvim/.config/nvim/init.lua << 'EOF'
-- Python-focused Neovim config

-- LSP
require('lspconfig').pyright.setup{}

-- Python-specific keymaps
vim.keymap.set('n', '<leader>r', ':!python %<CR>')
EOF

VSCode para Python
cat > python-dev/vscode/.config/Code/User/settings.json << 'EOF'
{
 "python.linting.enabled": true,
 "python.linting.pylintEnabled": true,
 "python.formatting.provider": "black"
}
EOF

Shell additions para Python
cat > python-dev/shell/.zshrc.project << 'EOF'
Python dev environment

export PYTHONPATH="$HOME/projects/python:$PYTHONPATH"

alias pytest='python -m pytest'
alias venv='python -m venv venv && source venv/bin/activate'
EOF
Web Development:
Neovim para Web
cat > web-dev/nvim/.config/nvim/init.lua << 'EOF'
-- Web-focused Neovim config

-- LSP for JS/TS
require('lspconfig').tsserver.setup{}

-- Live server
vim.keymap.set('n', '<leader>l', ':!live-server .<CR>')
EOF

VSCode para Web
cat > web-dev/vscode/.config/Code/User/settings.json << 'EOF'
{
 "emmet.includeLanguages": {
 "javascript": "javascriptreact"
 },
 "prettier.enable": true,
 "editor.formatOnSave": true
}
EOF
14.10.5 Paso 4: Scripts de Activación
Script para activar proyecto Python
cat > ~/dotfiles/activate-python.sh << 'EOF'
#!/bin/bash

echo "🐍 Activando entorno Python..."

cd ~/dotfiles

Unstow otros proyectos
stow -D web-dev/nvim 2>/dev/null || true
stow -D latex-writing/nvim 2>/dev/null || true

Stow común
stow common/*

Stow Python
stow python-dev/*

Copiar project-specific shell config
cp python-dev/shell/.zshrc.project ~/.zshrc.project

echo "✅ Entorno Python activado"
EOF

chmod +x ~/dotfiles/activate-python.sh
Script para activar proyecto Web
cat > ~/dotfiles/activate-web.sh << 'EOF'
#!/bin/bash

echo "🌐 Activando entorno Web..."

cd ~/dotfiles

Unstow otros
stow -D python-dev/nvim 2>/dev/null || true
stow -D latex-writing/nvim 2>/dev/null || true

Stow común
stow common/*

Stow Web
stow web-dev/*

Shell config
cp web-dev/shell/.zshrc.project ~/.zshrc.project

echo "✅ Entorno Web activado"
EOF

chmod +x ~/dotfiles/activate-web.sh
14.10.6 Paso 5: Uso
Trabajar en proyecto Python
~/dotfiles/activate-python.sh
cd ~/projects/python/my-project
nvim # Abre con config de Python

Cambiar a proyecto Web
~/dotfiles/activate-web.sh
cd ~/projects/web/my-app
nvim # Abre con config de Web
14.10.7 Paso 6: Automatizar con Direnv (Avanzado)
Instalar direnv
sudo pacman -S direnv

En cada proyecto, crear .envrc
cd ~/projects/python/my-project
cat > .envrc << 'EOF'
#!/bin/bash
Activar entorno Python automáticamente
source "$HOME/dotfiles/activate-python.sh"
EOF

direnv allow

Ahora al entrar al directorio, se activa automáticamente
15. Mi Repositorio .dotfiles
15.1 Mi Estructura Actual
~/dotfiles/
├── git/
│ └── .gitconfig
├── kde/
│ └── .config/
│ ├── kdeglobals
│ ├── dolphinrc
│ └── ...
├── shell/
│ ├── .zshrc
│ └── starship.toml
├── terminal/
│ └── .config/
│ └── konsolerc
├── vscode/
│ └── .config/
│ ├── settings.json
│ └── keybindings.json
├── zotero/
│ └── .zotero/...
├── obsidian/
│ └── Documents/thoughts/.obsidian/
└── ... (más paquetes)
15.2 Implementación de Stow
15.2.1 Script install.sh
Mi install.sh actual debe usar Stow. Aquí está mi versión mejorada:
#!/bin/bash
~/dotfiles/install.sh

set -e

DOTFILES="$HOME/dotfiles"
BACKUP_DIR="$HOME/dotfiles-backup-$(date +%Y%m%d-%H%M%S)"

Colores
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
NC='\033[0m' # No Color

Funciones
log_info() {
 echo -e "${GREEN}[INFO]${NC} $1"
}

log_warn() {
 echo -e "${YELLOW}[WARN]${NC} $1"
}

log_error() {
 echo -e "${RED}[ERROR]${NC} $1"
}

Verificar que Stow está instalado
if ! command -v stow &> /dev/null; then
 log_error "Stow no está instalado"
 log_info "Instalando stow..."
 sudo apt update && sudo apt install -y stow
fi

Función para hacer backup
backup_if_exists() {
 local file="$1"
 if [-e "$file"] && [! -L "$file"]; then
 mkdir -p "$BACKUP_DIR"
 cp -r "$file" "$BACKUP_DIR/"
 log_warn "Backup: $file -> $BACKUP_DIR/"
 fi
}

Función para stow paquete
stow_package() {
 local package="$1"

 log_info "Stowing $package..."

 # Dry run primero
 if stow -nv "$package" 2>&1 | grep -q "WARNING"; then
 log_warn "Conflicto detectado para $package"
 read -p "¿Hacer backup y continuar? [y/N] " -n 1 -r
 echo
 if [[$REPLY =~ ^[Yy]$]]; then
 # Hacer backup de archivos conflictivos
 # (aquí necesitarías lógica más sofisticada)
 stow "$package"
 else
 log_error "Saltando $package"
 return 1
 fi
 else
 stow "$package"
 log_info "✓ $package instalado"
 fi
}

Cambiar a dotfiles directory
cd "$DOTFILES" || exit 1

Lista de paquetes a instalar
PACKAGES=(
 "git"
 "shell"
 "terminal"
 "kde"
 "vscode"
 "nvim"
 "kitty"
 # ... más paquetes
)

Opción para instalar todo o selectivo
if ["$1" == "all"]; then
 PACKAGES=($(ls -d */ | sed 's#/#'))
 log_info "Instalando TODOS los paquetes"
elif [$# -gt 0]; then
 PACKAGES=("$@")
 log_info "Instalando paquetes especificados: ${PACKAGES[*]}"
fi

Instalar paquetes
for package in "${PACKAGES[@]}"; do
 stow_package "$package" || true
done

log_info "Instalación completa!"
if [-d "$BACKUP_DIR"]; then
 log_info "Backups guardados en: $BACKUP_DIR"
fi
Uso:
Instalar paquetes específicos
./install.sh git shell terminal

Instalar todo
./install.sh all

Ver qué haría sin hacer cambios
(modificar script para agregar -n flag)
15.2.2 Script para Desinstalar
#!/bin/bash
~/dotfiles/uninstall.sh

DOTFILES="$HOME/dotfiles"

cd "$DOTFILES" || exit 1

if [$# -eq 0]; then
 echo "Uso: $0 <paquete1> [paquete2] ..."
 echo "O: $0 all"
 exit 1
fi

if ["$1" == "all"]; then
 PACKAGES=($(ls -d */ | sed 's#/#'))
else
 PACKAGES=("$@")
fi

for package in "${PACKAGES[@]}"; do
 echo "Unstowing $package..."
 stow -D "$package"
 echo "✓ $package desinstalado"
done
15.2.3 Reorganizar Paquetes Problemáticos
Zotero: Ubicación no estándar
Actual:
zotero/
 └── .zotero/zotero/25vfdnq5.default/
 └── prefs.js

Problema: .zotero está en HOME pero tiene subdirectorios profundos

Solución 1: Usar como está (funciona)
stow zotero
Resultado: ~/.zotero/... → dotfiles/zotero/.zotero/...

Solución 2: Si solo quieres prefs.js, simplificar:
zotero/
 └── .zotero/
 └── zotero/
 └── 25vfdnq5.default/
 └── prefs.js
Obsidian: Ruta específica
Actual:
obsidian/
 └── Documents/thoughts/.obsidian/

Problema: No está en .config sino en Documents

Solución: Está bien así, Stow lo maneja
stow obsidian
Resultado: ~/Documents/thoughts/.obsidian → ...
15.2.4 .stowrc
Crear ~/dotfiles/.stowrc:
~/dotfiles/.stowrc

Target es siempre HOME
--target=$HOME

Ignorar archivos comunes
--ignore='.git'
--ignore='README.*'
--ignore='LICENSE.*'
--ignore='.*.swp'
--ignore='.*~'
--ignore='install.sh'
--ignore='uninstall.sh'
--ignore='.stowrc'
Con esto, no necesitas especificar -t ~ cada vez.
15.2.5 .stow-local-ignore por Paquete
Para vscode:
~/dotfiles/vscode/.stow-local-ignore

No stow extensiones (solo configuración)
^/\.config/Code/CachedData/
^/\.config/Code/logs/
^/\.config/Code/User/workspaceStorage/
Para kde:
~/dotfiles/kde/.stow-local-ignore

Archivos de sesión y cache
^/\.config/session/
^/\.cache/
Para shell:
~/dotfiles/shell/.stow-local-ignore

Historia de shells (puede tener info sensible)
^/\.zsh_history
^/\.bash_history

Archivos compilados
\.zcompdump
15.2.6 Script de Verificación
#!/bin/bash
~/dotfiles/check-stow.sh

Verificar qué está stowed

DOTFILES="$HOME/dotfiles"

echo "Paquetes stowed:"
echo "================"

cd "$DOTFILES" || exit 1

for package in */; do
 package=${package%/}

 # Encontrar primer archivo del paquete
 first_file=$(find "$package" -type f | head -1)

 if [-z "$first_file"]; then
 continue
 fi

 # Convertir a path en HOME
 home_path="$HOME/${first_file#$package/}"

 if [-L "$home_path"]; then
 target=$(readlink "$home_path")
 if [["$target" == *"$DOTFILES/$package"*]]; then
 echo "✓ $package"
 else
 echo "✗ $package (symlink apunta a otro lugar)"
 fi
 else
 echo "✗ $package (no stowed)"
 fi
done
15.2.7 Actualizar .gitignore
~/dotfiles/.gitignore

Backups
*~
*.bak
*.old
*.orig
.*.swp

Datos sensibles
shell/.zsh_history
shell/.bash_history
.netrc
.authinfo

Cache y temporales
**/.cache/
**/__pycache__/
**/node_modules/

Logs
**/*.log

Sistema
.DS_Store
Thumbs.db

Archivos de Stow
.stow

Zotero database (demasiado grande)
zotero/.zotero/zotero/*/zotero.sqlite*

VSCode workspace storage
vscode/.config/Code/User/workspaceStorage/
15.2.8 Comandos Útiles
Navegar a dotfiles
cd ~/dotfiles

Instalar todo (primera vez)
./install.sh all

Instalar paquetes esenciales
./install.sh git shell terminal kde

Verificar qué está instalado
./check-stow.sh

Actualizar después de pull
git pull
stow -R */ # Restow todo

Desinstalar temporalmente para pruebas
stow -D vscode
hacer pruebas...
stow vscode # Reinstalar

Agregar nuevo paquete
mkdir new-app
crear estructura...
stow new-app
git add new-app/
git commit -m "Add new-app"
16. Workflows
16.1 Workflow 1: Configuración Inicial
Paso 1: Crear estructura
mkdir -p ~/dotfiles
cd ~/dotfiles
git init

Paso 2: Crear paquetes
mkdir -p zsh nvim git

Paso 3: Mover configs existentes
mv ~/.zshrc zsh/
mv ~/.config/nvim nvim/.config/
mv ~/.gitconfig git/

Paso 4: Stow
stow zsh nvim git

Paso 5: Verificar
ls -la ~/.zshrc # debe ser symlink

Paso 6: Git
git add .
git commit -m "Initial dotfiles"
git remote add origin git@github.com:user/dotfiles.git
git push -u origin main
16.2 Workflow 2: Día a Día
Editar configuración (desde cualquier lugar)
nvim ~/.config/nvim/init.lua # Edita a través del symlink

Commit cambios
cd ~/dotfiles
git add nvim/
git commit -m "Update nvim config: add new plugin"
git push

En otra máquina
cd ~/dotfiles
git pull
Los cambios se reflejan automáticamente (symlinks)
16.3 Workflow 3: Nueva Máquina
Clonar
git clone https://github.com/user/dotfiles.git ~/dotfiles

Instalar Stow
sudo apt install stow

Backup existentes (precaución)
mkdir ~/backup
cp ~/.zshrc ~/backup/ 2>/dev/null || true

Stow
cd ~/dotfiles
stow */

Verificar
ls -la ~/ | grep '\->'

Instalar dependencias de apps
(nvim plugins, zsh plugins, etc)
16.4 Workflow 4: Experimentar
Crear branch de experimento
cd ~/dotfiles
git checkout -b experiment-new-nvim

Modificar libremente
nvim nvim/.config/nvim/init.lua

Restow para aplicar
stow -R nvim

Probar...

Si funciona:
git checkout main
git merge experiment-new-nvim

Si no funciona:
git checkout main
stow -R nvim # Vuelve a main automáticamente
16.5 Workflow 5: Actualización Limpia
Pull cambios
cd ~/dotfiles
git pull origin main

Verificar qué cambió
git log -p --since="1 week ago"

Desinstalar y reinstalar (limpia symlinks obsoletos)
stow -D nvim
stow nvim

O usar restow
stow -R nvim

Verificar que funciona
nvim --version
17. Best Practices
17.1 Organización de Paquetes
DO:
Un paquete por aplicación
~/dotfiles/
├── nvim/
├── zsh/
└── git/

Replicar estructura de HOME exactamente
nvim/
 └── .config/
 └── nvim/
 └── init.lua
DON’T:
Múltiples aplicaciones en un paquete
~/dotfiles/
└── configs/
 ├── .config/nvim/
 ├── .config/kitty/
 └── .zshrc

Estructura diferente a HOME
nvim/
 └── init.lua # ❌ Falta .config/nvim/
17.2 Uso de Ignore Lists
DO:
Ignorar archivos sensibles
.stow-global-ignore
**/.history
**/.ssh/id_*
.netrc

Ignorar cache por paquete
nvim/.stow-local-ignore
^/\.config/nvim/plugin/packer_compiled\.lua
DON’T:
Commit archivos sensibles sin ignorar
git add ~/.ssh/id_rsa # ❌ ¡NUNCA!
17.3 Commits y Mensajes
DO:
Commits descriptivos y atómicos
git commit -m "feat(nvim): Add LSP configuration for Rust"
git commit -m "fix(zsh): Correct path to starship prompt"

Un cambio lógico por commit
DON’T:
Commits genéricos
git commit -m "Update stuff"
git commit -m "Changes"

Múltiples cambios no relacionados en un commit
17.4 Testing Antes de Commit
DO:
Siempre test antes de commit
stow -D nvim # Desinstalar
stow nvim # Reinstalar
Verificar que funciona
git commit

Dry run en nueva máquina
stow -nv */
DON’T:
Commit sin probar
Cambios → commit → push → Rompe en otra máquina
17.5 Backup Siempre
DO:
Backup antes de stow en nueva máquina
mkdir ~/backup
cp -r ~/.config/nvim ~/backup/

Luego stow
stow nvim
DON’T:
Stow directamente sin backup
stow nvim # ❌ Puede sobrescribir configs importantes
17.6 Documentación
DO:
README.md completo
- Qué paquetes hay
- Cómo instalar
- Dependencias
- Comandos útiles

Comentarios en configs
nvim/init.lua
-- LSP configuration
-- Requires: nvim-lspconfig plugin
DON’T:
README vacío o sin info
Configs sin comentarios
17.7 Estructura Consistente
DO:
Misma estructura en todos los paquetes
package/
 ├── .stow-local-ignore
 ├── README.md
 └── (archivos que van en HOME)
DON’T:
Estructura inconsistente entre paquetes
17.8 Versionado
DO:
Tags para versiones estables
git tag -a v1.0.0 -m "Stable nvim config"

Branches para experimentar
git checkout -b experiment/new-theme
DON’T:
Todo en main sin tags
Experimentar directamente en main
18. Alternativas a Stow
18.1 Yadm (Yet Another Dotfiles Manager)
Ventajas:
· Git nativo, no symlinks
· Encriptación built-in
· Templates con Jinja2
· Bootstrap scripts
Desventajas:
· Menos control granular
· Todo en un repo
Instalar
sudo apt install yadm

Usar
yadm init
yadm add ~/.zshrc
yadm commit -m "Add zshrc"
18.2 Chezmoi
Ventajas:
· Templates
· Secrets management
· Cross-platform
· Estado vs archivos
Desventajas:
· Más complejo
· Curva de aprendizaje
Instalar
sh -c "$(curl -fsLS get.chezmoi.io)"

Usar
chezmoi init
chezmoi add ~/.zshrc
18.3 Dotbot
Ventajas:
· Basado en configuración YAML
· Bootstrapping automático
· Plugins
Desventajas:
· Otra herramienta que aprender
· Menos flexibilidad que Stow
install.conf.yaml
- link:
 ~/.zshrc: zshrc
 ~/.config/nvim: nvim
18.4 Bare Git Repository
Ventajas:
· Solo Git, no tools extra
· Total control
Desventajas:
· Más manual
· Conflictos con .gitignore
Setup
git init --bare $HOME/.dotfiles
alias config='/usr/bin/git --git-dir=$HOME/.dotfiles/ --work-tree=$HOME'
config config --local status.showUntrackedFiles no

Usar
config add .zshrc
config commit -m "Add zshrc"
18.5 Comparación
	Característica
	GNU Stow
	yadm
	chezmoi
	dotbot
	Repositorio Git bare

	Simplicidad
	Muy alta
	Alta
	Media
	Alta
	Media

	Flexibilidad
	Muy alta
	Media
	Muy alta
	Media
	Muy alta

	Soporte para plantillas
	No
	Parcial
	Completo (Jinja2)
	No
	No

	Manejo de secretos
	No
	Bueno
	Excelente (integrado)
	No
	No

	Facilidad de instalación
	Muy sencilla
	Muy sencilla
	Muy sencilla
	Muy sencilla
	Sin instalación adicional

	Tamaño de la comunidad
	Grande
	Mediana
	Grande
	Pequeña
	N/A (herramienta nativa)

	Curva de aprendizaje
	Baja
	Baja
	Media-alta
	Baja
	Media

	Uso de enlaces simbólicos
	Sí (principal)
	No
	Sí (opcional)
	Sí
	No

	Soporte multiplataforma
	Excelente
	Bueno
	Excelente
	Bueno
	Excelente

Recomendación: Stow es ideal si quieres:
· Simplicidad
· Control total
· Organización por paquetes
· Solo symlinks, sin magia
19. Conclusión
La gestión de dotfiles es una práctica esencial para optimizar el entorno de desarrollo y asegurar la persistencia de las configuraciones personalizadas. GNU Stow, en particular, se destaca por su simplicidad y eficacia al manejar enlaces simbólicos, especialmente cuando se combina con Git para el versionado y la sincronización. Permite una modularidad excelente y una replicación rápida de entornos.
Si bien existen alternativas más avanzadas como Chezmoi o YADM (que ofrecen funciones adicionales como plantillas y cifrado de secretos) o soluciones declarativas como NixOS/Home-Manager, Stow sigue siendo una opción robusta y preferida por muchos por su enfoque directo y la curva de aprendizaje mínima. La clave es elegir la herramienta que mejor se adapte a las necesidades y al nivel de complejidad deseado, siempre priorizando la seguridad de la información sensible.
19.1 Comandos Esenciales
Instalar
stow paquete

Desinstalar
stow -D paquete

Reinstalar
stow -R paquete

Simular
stow -nv paquete

Ver qué hace
stow -vv paquete

Ignorar archivos
stow --ignore='patrón' paquete

Especificar directorios
stow -d ~/dotfiles -t ~ paquete
19.2 Recursos Adicionales
Documentación:
· Manual oficial: man stow
· Info pages: info stow
· Web: https://www.gnu.org/software/stow/
Comunidad:
· r/unixporn (ejemplos de dotfiles)
· GitHub topic: dotfiles
· YouTube: “dotfiles management”
Ejemplos de dotfiles con Stow:
· https://github.com/search?q=stow+dotfiles
· https://dotfiles.github.io/
20. Publicaciones Similares
Si te interesó este artículo, te recomendamos que explores otros blogs y recursos relacionados que pueden ampliar tus conocimientos. Aquí te dejo algunas sugerencias:
1. Comandos De Informacion Windows
1. Adb
1. Limpieza Y Optimizacion De Pc
1. Usando Apk En Windown 11
1. Gestionar Versiones De Jdk En Kubuntu
1. Instalar Tor Browser
1. Crear Enlaces Duros O Hard Link En Linux
1. Comandos Vim
1. Guia De Git Y Github
1. 00 Primeros Pasos En Linux
1. 01 Introduccion Linux
1. 02 Distribuciones Linux
1. 03 Instalacion Linux
1. 04 Administracion Particiones Volumenes
1. Atajos De Teclado Y Comandos Para Usar Vim
1. Instalando Specitify
1. Gestiona Tus Dotfiles Con Gnu Stow
Esperamos que encuentres estas publicaciones igualmente interesantes y útiles. ¡Disfruta de la lectura!

