
Gestiona dotfiles fácilmente con GNU Stow

Edison Achalma
Escuela Profesional de Economía, Universidad Nacional de San Cristóbal de Huamanga

Resumen
This tutorial provides a step-by-step guide to managing dotfiles using GNU
Stow, a tool that leverages symbolic links to centralize and synchronize con-
figuration files across Unix-like systems (Linux, macOS, WSL). It explains
the importance of dotfiles, such as .bashrc and .gitconfig, in customizing
user environments and highlights the inefficiencies of manual management.
The guide details installing GNU Stow, creating a dotfiles repository, lin-
king configurations, and automating the process with a bash script. Advan-
ced tips include handling conflicts, platform-specific setups, and alternatives
like Chezmoi and YADM. This resource is designed for developers seeking
efficient, portable configuration management.

Palabras Claves: Dotfiles, GNU Stow, Symbolic links, Configuration ma-
nagement, Git integration

Tabla de contenidos

Introduction 8

1 Instalación 10
1.1 Linux . 10
1.2 macOS . 10
1.3 Desde Fuente . 10
1.4 Verificar Instalación . 11

2 Conceptos Fundamentales 11
2.1 Terminología Clave . 11

2.1.1 Package (Paquete) . 11
2.1.2 Target Directory (Directorio Objetivo) 11
2.1.3 Stow Directory (Directorio Stow) . 12
2.1.4 Installation Image (Imagen de Instalación) 12
2.1.5 Symlink (Enlace Simbólico) . 12

Edison Achalma https://orcid.org/0000-0001-6996-3364
El autor no tiene conflictos de interés que revelar. Los roles de autor se clasificaron utilizando la taxonomía de

roles de colaborador (CRediT; https://credit.niso.org/) de la siguiente manera: Edison Achalma: conceptualización,
redacción

La correspondencia relativa a este artículo debe dirigirse a Edison Achalma, Email: el-
mer.achalma.09@unsch.edu.pe

https://orcid.org/0000-0001-6996-3364
mailto:elmer.achalma.09@unsch.edu.pe
mailto:elmer.achalma.09@unsch.edu.pe

GESTIÓN DE DOTFILES CON GNU STOW 2

2.2 Jerarquía de Directorios . 12

3 Sintaxis y Comandos 13
3.1 Sintaxis Básica . 13
3.2 Acciones Principales . 13

3.2.1 Stow (Instalar) . 13
3.2.2 Delete (Desinstalar) . 13
3.2.3 Restow (Reinstalar) . 13

3.3 Opciones de Directorio . 14
3.3.1 -d / --dir (Stow Directory) . 14
3.3.2 -t / --target (Target Directory) . 14

3.4 Opciones de Simulación y Verbosidad . 14
3.4.1 -n / --no / --simulate (Dry Run) 14
3.4.2 -v / --verbose (Verbosidad) . 15

3.5 Opciones Avanzadas . 15
3.5.1 --ignore (Ignorar Archivos) . 15
3.5.2 --defer (Diferir) . 15
3.5.3 --override (Sobrescribir) . 15
3.5.4 --dotfiles (Modo Dotfiles) . 15
3.5.5 --no-folding (Sin Tree Folding) . 16
3.5.6 --adopt (Adoptar Archivos) . 16

3.6 Combinando Operaciones . 16

4 Estructura de Directorios 16
4.1 Estructura Recomendada para Dotfiles . 16
4.2 Principios de Organización . 17

4.2.1 Un Directorio = Un Paquete . 17
4.2.2 Replicar Estructura del HOME . 17
4.2.3 Agrupar Lógicamente . 18

4.3 Ejemplos de Estructuras . 18
4.3.1 Estructura Simple . 18
4.3.2 Estructura Compleja . 19

5 Instalación de Paquetes 20
5.1 Proceso de Instalación . 20

5.1.1 Tree Folding (Plegado de Árbol) . 20
5.1.2 Tree Unfolding (Desplegado de Árbol) 21

5.2 Instalación Básica . 21
5.3 Instalación con Verificación . 22
5.4 Instalación Selectiva . 22

6 Desinstalación de Paquetes 22
6.1 Proceso de Desinstalación . 22

6.1.1 Eliminación de Symlinks . 22
6.1.2 Eliminación de Directorios Vacíos . 22
6.1.3 Tree Refolding (Re-plegado) . 23

6.2 Desinstalación Básica . 23
6.3 Desinstalación con Verificación . 23
6.4 Desinstalación Parcial . 24

GESTIÓN DE DOTFILES CON GNU STOW 3

7 Reinstalación de Paquetes 24
7.1 Comando Restow . 24
7.2 Cuándo Usar Restow . 24
7.3 Restow vs Delete + Stow . 24

8 Gestión de Dotfiles 25
8.1 Setup Inicial . 25

8.1.1 Crear Estructura . 25
8.1.2 Mover Configuraciones Existentes . 25
8.1.3 Usar --adopt (Con Precaución) . 26

8.2 Workflow Diario . 26
8.2.1 Editar Configuraciones . 26
8.2.2 Agregar Nueva Aplicación . 26
8.2.3 Sincronizar con Git . 27

8.3 Manejo de Archivos Sensibles . 27
8.3.1 Estrategia 1: .gitignore . 27
8.3.2 Estrategia 2: Archivos Template . 27
8.3.3 Estrategia 3: Encriptación . 28

8.4 Estructura para Múltiples Hosts . 28

9 Ignore Lists 29
9.1 Tipos de Ignore Lists . 29

9.1.1 Built-in (Predeterminado) . 29
9.1.2 Global Ignore List . 29
9.1.3 Package-Local Ignore List . 30

9.2 Sintaxis de Ignore Lists . 30
9.2.1 Reglas de Matching . 30
9.2.2 Ejemplos Prácticos . 31

9.3 Precedencia de Ignore Lists . 31
9.4 Opción --ignore en CLI . 31

10 Opciones Avanzadas 32
10.1 Tree Folding Control . 32

10.1.1 --no-folding . 32
10.2 Adopt Mode . 32

10.2.1 --adopt . 32
10.3 Defer y Override . 33

10.3.1 --defer . 33
10.3.2 --override . 33

10.4 Dotfiles Mode . 34
10.4.1 --dotfiles . 34

10.5 Multiple Stow Directories . 34

11 Integración con Git 35
11.1 Estructura de Repositorio . 35
11.2 .gitignore Completo . 35
11.3 Commits Best Practices . 37
11.4 Branches Strategy . 37
11.5 Tags para Versiones . 38

GESTIÓN DE DOTFILES CON GNU STOW 4

11.6 Submodules para Plugins . 38
11.7 GitHub Actions para Validación . 38

12 Troubleshooting 39
12.1 Problema 1: Conflictos al Stow . 39
12.2 Problema 2: Symlinks Rotos . 40
12.3 Problema 3: Directorio No Vacío . 40
12.4 Problema 4: Tree Folding Inesperado . 41
12.5 Problema 5: Permiso Denegado . 41
12.6 Problema 6: Stow No Encuentra Paquete . 42
12.7 Problema 7: .stowrc No Se Aplica . 42
12.8 Problema 8: Stow Muy Lento . 43

13 Scripts de Automatización 43
13.1 Script 1: install.sh Completo . 43
13.2 Script 2: update.sh . 48
13.3 Script 3: check.sh . 49
13.4 Script 4: clean.sh . 50

14 Casos de Uso Prácticos 51
14.1 Caso 1: Crear Dotfiles desde Cero (Primera Vez) 51

14.1.1 Paso 1: Preparación . 51
14.1.2 Paso 2: Crear Estructura de Paquetes 51
14.1.3 Paso 3: Migrar Configuraciones Existentes 52
14.1.4 Paso 4: Crear Ignore Lists . 53
14.1.5 Paso 5: Crear .gitignore . 54
14.1.6 Paso 6: Crear .stowrc . 56
14.1.7 Paso 7: Instalar con Stow (Primera Vez) 56
14.1.8 Paso 8: Verificar que Todo Funciona 57
14.1.9 Paso 9: Crear Scripts de Ayuda . 57
14.1.10 Paso 10: Crear Repositorio en GitHub 58
14.1.11 Paso 11: Crear README.md . 59

14.2 Caso 2: Replicar Dotfiles en Laptop Nueva . 60
14.2.1 Paso 1: Preparar Nueva Máquina . 60
14.2.2 Paso 2: Backup de Configs Existentes (Precaución) 61
14.2.3 Paso 3: Clonar Repositorio . 61
14.2.4 Paso 4: Revisar y Ajustar (Si Necesario) 61
14.2.5 Paso 5: Instalar Dependencias . 62
14.2.6 Paso 6: Dry Run (Simulación) . 62
14.2.7 Paso 7: Resolver Conflictos (Si Existen) 62
14.2.8 Paso 8: Instalar Todo . 63
14.2.9 Paso 9: Verificar Instalación . 63
14.2.10 Paso 10: Configurar Shell . 64
14.2.11 Paso 11: Instalar Dependencias Específicas 64
14.2.12 Paso 12: Probar Todo . 65
14.2.13 Paso 13: Ajustes Finales . 65

14.3 Caso 3: Actualizar Configs y Sincronizar . 65
14.3.1 Paso 1: Identificar Cambios . 66
14.3.2 Paso 2: Probar Cambios Localmente 66

GESTIÓN DE DOTFILES CON GNU STOW 5

14.3.3 Paso 3: Commit Cambios . 66
14.3.4 Paso 4: Push a GitHub . 67
14.3.5 Paso 5: Actualizar Otras Máquinas . 67
14.3.6 Paso 6: Manejar Conflictos (Si Existen) 67

14.4 Caso 4: Agregar Nueva Aplicación (Kate Editor) 68
14.4.1 Paso 1: Usar Kate y Configurar . 68
14.4.2 Paso 2: Localizar Archivos de Config 68
14.4.3 Paso 3: Crear Paquete Kate . 69
14.4.4 Paso 4: Crear Ignore List para Kate 69
14.4.5 Paso 5: Test Stow (Dry Run) . 70
14.4.6 Paso 6: Hacer Backup y Eliminar Original 70
14.4.7 Paso 7: Stow Kate . 70
14.4.8 Paso 8: Versionar con Git . 70
14.4.9 Paso 9: Actualizar README . 71
14.4.10 Paso 10: Actualizar Script de Instalación 71

14.5 Caso 5: Migrar de Kubuntu a Archcraft . 72
14.5.1 Paso 1: Evaluar Diferencias . 72
14.5.2 Paso 2: En Archcraft Nueva . 72
14.5.3 Paso 3: Crear Branch para Archcraft 72
14.5.4 Paso 4: Instalar Paquetes Universales 72
14.5.5 Paso 5: Adaptar o Crear Nuevos Paquetes 73
14.5.6 Paso 6: No Instalar Paquetes Incompatibles 74
14.5.7 Paso 7: Commit Cambios . 74
14.5.8 Paso 8: Estrategia de Branches . 74
14.5.9 Paso 9: Script de Instalación por Distro 75
14.5.10 Paso 10: Mantener Ambos Sistemas 76

14.6 Caso 6: Probar Nueva Configuración Sin Romper 76
14.6.1 Paso 1: Crear Branch Experimental 76
14.6.2 Paso 2: Crear Paquete Alternativo . 76
14.6.3 Paso 3: Desinstalar Neovim Actual . 77
14.6.4 Paso 4: Instalar Nueva Config . 77
14.6.5 Paso 5: Probar . 77
14.6.6 Paso 6: Decidir Qué Hacer . 77

14.7 Caso 7: Sincronizar Múltiples Máquinas en Tiempo Real 78
14.7.1 Configuración Inicial (Una Vez) . 79
14.7.2 Workflow Diario . 79
14.7.3 Automatizar con Cron (Opcional) . 80
14.7.4 Manejar Conflictos Automáticamente 80
14.7.5 Usar Git Hooks (Avanzado) . 80

14.8 Caso 8: Compartir Dotfiles con Equipo/Lab 81
14.8.1 Paso 1: Crear Repo de Equipo . 81
14.8.2 Paso 2: Estructura Multi-Usuario . 81
14.8.3 Paso 3: Setup Común . 81
14.8.4 Paso 4: Configs Personales . 82
14.8.5 Paso 5: Script de Instalación . 83
14.8.6 Paso 6: Cada Usuario Instala . 83
14.8.7 Paso 7: Actualizar Configs Compartidas 84
14.8.8 Paso 8: Usuarios Agregan Sus Configs 84

GESTIÓN DE DOTFILES CON GNU STOW 6

14.9 Caso 9: Migrar de Sistema Manual a Stow . 84
14.9.1 Estado Inicial . 84
14.9.2 Paso 1: Backup Completo . 85
14.9.3 Paso 2: Crear Nueva Estructura . 85
14.9.4 Paso 3: Reorganizar Archivos . 85
14.9.5 Paso 4: Verificar Nueva Estructura . 86
14.9.6 Paso 5: Eliminar Symlinks/Archivos Viejos de HOME 86
14.9.7 Paso 6: Instalar con Stow . 86
14.9.8 Paso 7: Commit Nueva Estructura . 87
14.9.9 Paso 8: Actualizar README . 87
14.9.10 Paso 9: Crear Scripts . 88
14.9.11 Paso 10: Limpiar Historial de Git (Opcional) 89

14.10Caso 10: Setup para Desarrollo Multi-Proyecto 89
14.10.1 Estructura de Dotfiles . 89
14.10.2 Paso 1: Crear Estructura . 90
14.10.3 Paso 2: Configs Comunes . 90
14.10.4 Paso 3: Configs Específicas por Proyecto 90
14.10.5 Paso 4: Scripts de Activación . 92
14.10.6 Paso 5: Uso . 93
14.10.7 Paso 6: Automatizar con Direnv (Avanzado) 93

15 Mi Repositorio .dotfiles 93
15.1 Mi Estructura Actual . 93
15.2 Implementación de Stow . 94

15.2.1 Script install.sh . 94
15.2.2 Script para Desinstalar . 97
15.2.3 Reorganizar Paquetes Problemáticos 97
15.2.4 .stowrc . 98
15.2.5 .stow-local-ignore por Paquete . 98
15.2.6 Script de Verificación . 99
15.2.7 Actualizar .gitignore . 100
15.2.8 Comandos Útiles . 100

16 Workflows 101
16.1 Workflow 1: Configuración Inicial . 101
16.2 Workflow 2: Día a Día . 102
16.3 Workflow 3: Nueva Máquina . 102
16.4 Workflow 4: Experimentar . 103
16.5 Workflow 5: Actualización Limpia . 103

17 Best Practices 103
17.1 Organización de Paquetes . 103
17.2 Uso de Ignore Lists . 104
17.3 Commits y Mensajes . 104
17.4 Testing Antes de Commit . 105
17.5 Backup Siempre . 105
17.6 Documentación . 106
17.7 Estructura Consistente . 106
17.8 Versionado . 106

GESTIÓN DE DOTFILES CON GNU STOW 7

18 Alternativas a Stow 107
18.1 Yadm (Yet Another Dotfiles Manager) . 107
18.2 Chezmoi . 107
18.3 Dotbot . 108
18.4 Bare Git Repository . 108
18.5 Comparación . 108

19 Conclusión 109
19.1 Comandos Esenciales . 109
19.2 Recursos Adicionales . 110

20 Publicaciones Similares 110

GESTIÓN DE DOTFILES CON GNU STOW 8

Gestiona dotfiles fácilmente con GNU Stow

¿Alguna vez has perdido horas configurando tu terminal o editor tras cambiar de compu-
tadora? Los dotfiles, esos archivos ocultos como .bashrc o .gitconfig, guardan tus perso-
nalizaciones, pero gestionarlos a mano es un caos. GNU Stow simplifica todo: organiza tus
configuraciones en un repositorio central y usa enlaces simbólicos para sincronizarlas en mi-
nutos.

¿Qué es Dotfiles?
Los dotfiles son archivos ocultos en sistemas Unix (Linux, macOS) que empiezan con un

punto (ej., .zshrc, .gitconfig, .config/nvim). Almacenan configuraciones personalizadas
para tu terminal, editor de código o gestor de ventanas. Por ejemplo, .bashrc define alias y
variables de entorno, mientras que .vimrc ajusta tu editor Vim. Estos archivos son el corazón
de tu flujo de trabajo, ya que personalizan tus herramientas favoritas.

Tener dotfiles bien organizados te ahorra horas al replicar tu entorno en nuevas má-
quinas. Imagina configurar tu shell o editor desde cero tras reinstalar tu sistema: ¡es tedioso!
Con una gestión adecuada, puedes clonar tus configuraciones y tener todo listo rápidamente.
Esto es importante para desarrolladores que trabajan en múltiples dispositivos o entornos como
servidores y laptops.

Problemas de la Gestión Manual
Copiar dotfilesmanualmente o usar scripts caseros es lento y arriesgado. Puedes sobres-

cribir archivos, olvidar configuraciones o perderlas en una reinstalación. Por ejemplo, mover
.zshrc a otra máquina sin un sistema organizado puede causar errores si las versiones del soft-
ware difieren. GNU Stow soluciona esto al centralizar tus archivos y crear enlaces simbólicos
automáticamente, manteniendo todo sincronizado.

¿Qué es GNU Stow?
GNU Stow es un gestor de granjas de enlaces simbólicos (symlink farm manager) que

permite administrar múltiples paquetes de software o conjuntos de archivos de configuración de
manera organizada. Concepto principal:

Instalar cada paquete en su propio árbol de directorios
↓

Usar enlaces simbólicos para que aparezcan en un árbol común
↓

Administrar fácilmente cada paquete de forma independiente

Problema original:

En /usr/local/man/man1 tenías:
a2p.1 # ¿De qué paquete es?
perl.1 # ¿Perl?
emacs.1 # ¿Emacs?
etags.1 # ¿Emacs también?

Al desinstalar Perl... ¿qué archivos eliminar?

Solución con Stow:

GESTIÓN DE DOTFILES CON GNU STOW 9

Cada paquete en su propio árbol:
/usr/local/stow/perl/
��� bin/
� ��� perl
� ��� a2p
��� man/

��� man1/
��� perl.1
��� a2p.1

/usr/local/stow/emacs/
��� bin/
� ��� emacs
��� man/

��� man1/
��� emacs.1

Stow crea symlinks en /usr/local/ que apuntan a los paquetes

Gestión de Dotfiles
Aunque Stow fue diseñado para software, hoy en día su uso principal es gestionar dot-

files:
Ventajas:

• Mantener dotfiles organizados por aplicación
• Sincronizar con Git
• Instalar/desinstalar configuraciones selectivamente
• Mantener backups sin perder estructura
• Compartir configuraciones entre máquinas
• Control de versiones granular

Comparación: Antes vs Después de Stow
Sin Stow:

~/.config/
��� nvim/
��� kitty/
��� zsh/
��� ...

Problemas:
- Difícil hacer backup selectivo
- No hay organización por paquete
- Complicado compartir entre máquinas
- Sin control de versiones granular

Con Stow:

GESTIÓN DE DOTFILES CON GNU STOW 10

~/dotfiles/ # Stow directory
��� nvim/ # Package
� ��� .config/
� ��� nvim/
��� kitty/ # Package
� ��� .config/
� ��� kitty/
��� zsh/ # Package

��� .zshrc
��� .zshenv

Ventajas:
- Cada aplicación es un "paquete"
- Fácil stow/unstow selectivo
- Git maneja cada paquete independientemente
- Estructura clara y mantenible

1 Instalación

1.1 Linux

Ubuntu/Debian:

sudo apt update
sudo apt install stow

Arch Linux:

sudo pacman -S stow

Fedora/RHEL:

sudo dnf install stow

openSUSE:

sudo zypper install stow

1.2 macOS

Con Homebrew
brew install stow

O con MacPorts
sudo port install stow

1.3 Desde Fuente

GESTIÓN DE DOTFILES CON GNU STOW 11

Descargar última versión
wget https://ftp.gnu.org/gnu/stow/stow-latest.tar.gz
tar -xzf stow-latest.tar.gz
cd stow-2.4.1

Compilar e instalar
./configure
make
sudo make install

1.4 Verificar Instalación

Verificar versión
stow --version
GNU Stow version 2.4.1

Ver ayuda
stow --help

2 Conceptos Fundamentales

2.1 Terminología Clave

2.1.1 Package (Paquete)

Una colección relacionada de archivos y directorios que administras como una unidad.

Ejemplo: paquete "nvim"
nvim/
��� .config/
� ��� nvim/
� ��� init.lua
� ��� lua/
��� .local/

��� share/
��� nvim/

2.1.2 Target Directory (Directorio Objetivo)

El directorio raíz donde quieres que aparezcan instalados tus paquetes.

Para dotfiles, usualmente es:
Target: ~/ (tu HOME)

Para software del sistema:
Target: /usr/local

GESTIÓN DE DOTFILES CON GNU STOW 12

2.1.3 Stow Directory (Directorio Stow)

El directorio raíz que contiene todos tus paquetes en subdirectorios separados.

Para dotfiles:
Stow dir: ~/dotfiles/

Para software:
Stow dir: /usr/local/stow/

2.1.4 Installation Image (Imagen de Instalación)

La estructura de archivos y directorios requerida por un paquete, relativa al target direc-
tory.

El paquete "zsh" tiene esta imagen:
zsh/
��� .zshrc # → ~/.zshrc
��� .zshenv # → ~/.zshenv
��� .config/

��� zsh/ # → ~/.config/zsh/
��� aliases.zsh

2.1.5 Symlink (Enlace Simbólico)

Un archivo especial que apunta a otro archivo o directorio.

Ejemplo:
~/.zshrc -> ~/dotfiles/zsh/.zshrc

↑
symlink

Tipos de symlinks:

• Absoluto: /home/user/dotfiles/zsh/.zshrc
• Relativo: ../dotfiles/zsh/.zshrc

Nota: Stow solo crea symlinks relativos dentro del target directory.

2.2 Jerarquía de Directorios

���
� /home/user/ (target directory) �
� �
� .zshrc ������� �
� .config/ � �
� ��� nvim/ � symlinks �
� ��� kitty/ � �
��

�
↓

GESTIÓN DE DOTFILES CON GNU STOW 13

���
� /home/user/dotfiles/ (stow dir) �
� �
� ��� zsh/ (package) �
� � ��� .zshrc �
� ��� nvim/ (package) �
� � ��� .config/ �
� � ��� nvim/ �
� ��� kitty/ (package) �
� ��� .config/ �
� ��� kitty/ �
���

3 Sintaxis y Comandos

3.1 Sintaxis Básica

stow [opciones] [flags de acción] paquete1 paquete2 ...

3.2 Acciones Principales

3.2.1 Stow (Instalar)

Instalar un paquete
stow nombre-paquete

Instalar múltiples paquetes
stow nvim zsh kitty

Flag explícito (opcional)
stow -S nvim
stow --stow nvim

3.2.2 Delete (Desinstalar)

Desinstalar un paquete
stow -D nvim
stow --delete nvim

Desinstalar múltiples
stow -D nvim zsh kitty

3.2.3 Restow (Reinstalar)

GESTIÓN DE DOTFILES CON GNU STOW 14

Unstow + Stow en una operación
stow -R nvim
stow --restow nvim

Útil después de actualizar paquete

3.3 Opciones de Directorio

3.3.1 -d / --dir (Stow Directory)

Especificar stow directory
stow -d ~/mis-dotfiles -t ~ nvim

Default: directorio actual

3.3.2 -t / --target (Target Directory)

Especificar target directory
stow -t /usr/local perl

Default: padre del stow directory

Ejemplo completo:

Estructura:
/opt/

��� myapps/ # stow directory
��� myapp/ # package

��� bin/
��� myapp

Comando:
cd /opt/myapps
stow -t /usr/local myapp

Resultado:
/usr/local/bin/myapp -> ../opt/myapps/myapp/bin/myapp

3.4 Opciones de Simulación y Verbosidad

3.4.1 -n / --no / --simulate (Dry Run)

Mostrar qué haría sin hacer cambios
stow -n nvim
stow --simulate nvim

Combinado con verbose
stow -nv nvim

GESTIÓN DE DOTFILES CON GNU STOW 15

3.4.2 -v / --verbose (Verbosidad)

Niveles de verbosidad: 0-5
stow -v nvim # verbose level 1
stow -vv nvim # verbose level 2
stow --verbose=5 nvim # verbose level 5

Nivel 0: silencioso (default)
Nivel 1-2: operaciones principales
Nivel 3-5: debug detallado

Ejemplo:

$ stow -nv zsh
WARNING! stowing zsh would cause conflicts:

* existing target is neither a link nor a directory: .zshrc
All operations aborted.

3.5 Opciones Avanzadas

3.5.1 --ignore (Ignorar Archivos)

Ignorar archivos que coincidan con regexp
stow --ignore='.*\.orig' --ignore='.*\.dist' nvim

Múltiples patrones
stow --ignore='README.*' --ignore='.*~' nvim

3.5.2 --defer (Diferir)

No sobrescribir si ya existe desde otro paquete
stow --defer=man --defer=info perl

3.5.3 --override (Sobrescribir)

Forzar sobrescribir symlinks existentes
stow --override=man --override=info perl

3.5.4 --dotfiles (Modo Dotfiles)

Transforma "dot-" en "."
dot-bashrc → .bashrc
stow --dotfiles bash

Ejemplo de paquete:
bash/

��� dot-bashrc # Se convierte en ~/.bashrc

GESTIÓN DE DOTFILES CON GNU STOW 16

3.5.5 --no-folding (Sin Tree Folding)

Desactivar tree folding
stow --no-folding nvim

Crea directorios en lugar de symlinks a directorios

3.5.6 --adopt (Adoptar Archivos)

CUIDADO: Modifica el stow directory
Mueve archivos del target al package

stow --adopt nvim

Si ~/.config/nvim/init.lua existe:
Lo mueve a ~/dotfiles/nvim/.config/nvim/init.lua
Luego crea el symlink

3.6 Combinando Operaciones

Mezclar múltiples acciones
stow -D old-nvim -S new-nvim

Orden de ejecución:
1. Unstow old-nvim
2. Stow new-nvim

Múltiples paquetes, múltiples acciones
stow -S pkg1 pkg2 -D pkg3 pkg4 -S pkg5 -R pkg6
Resultado: unstow pkg3,4,6 → stow pkg1,2,5,6

4 Estructura de Directorios

4.1 Estructura Recomendada para Dotfiles

~/dotfiles/ # Stow directory
��� git/ # Package
� ��� .gitconfig
��� zsh/ # Package
� ��� .zshrc
� ��� .zshenv
� ��� .config/
� ��� zsh/
� ��� aliases.zsh
� ��� functions.zsh
��� nvim/ # Package

GESTIÓN DE DOTFILES CON GNU STOW 17

� ��� .config/
� ��� nvim/
� ��� init.lua
� ��� lua/
� ��� plugins/
� ��� config/
��� kitty/ # Package
� ��� .config/
� ��� kitty/
� ��� kitty.conf
� ��� themes/
��� tmux/ # Package
� ��� .tmux.conf
� ��� .config/
� ��� tmux/
��� kde/ # Package

��� .config/
��� kdeglobals
��� dolphinrc
��� kwinrc

4.2 Principios de Organización

4.2.1 Un Directorio = Un Paquete

Bien: un paquete por aplicación
nvim/

��� .config/
��� nvim/

Mal: múltiples aplicaciones en un paquete
editors/

��� .config/
� ��� nvim/
� ��� vim/
��� .vimrc

4.2.2 Replicar Estructura del HOME

El contenido del paquete debe replicar la estructura de ~/

Ejemplo: archivo en ~/.config/kitty/kitty.conf
Paquete debe ser:
kitty/

��� .config/ # replica la estructura
��� kitty/

��� kitty.conf

GESTIÓN DE DOTFILES CON GNU STOW 18

NO:
kitty/

��� kitty.conf # falta .config/

4.2.3 Agrupar Lógicamente

Opción 1: Por aplicación
~/dotfiles/
��� nvim/
��� vim/
��� emacs/

Opción 2: Por categoría (menos común)
~/dotfiles/
��� editors/
� ��� .vimrc
� ��� .config/nvim/
��� shells/

��� .zshrc
��� .bashrc

Recomendado: Opción 1 (por aplicación)

4.3 Ejemplos de Estructuras

4.3.1 Estructura Simple

~/dotfiles/
��� bash/
� ��� .bashrc
��� git/
� ��� .gitconfig
��� vim/

��� .vimrc

Instalación:

mkdir ~/dotfiles
cd ~/dotfiles

Crear la estructura para bash
mkdir -p bash

o mueve, o crea symlink, como prefieras
cp ~/.bashrc bash/.bashrc
(opcional) cp ~/.bash_profile bash/.bash_profile

GESTIÓN DE DOTFILES CON GNU STOW 19

Para git
mkdir git
cp ~/.gitconfig git/.gitconfig

Para vim
mkdir vim
cp ~/.vimrc vim/.vimrc
si tienes ~/.vim/ con plugins, etc → también lo copias/mueves

Para zsh + oh-my-zsh customizaciones
mkdir -p zsh/.config
cp ~/.zshrc zsh/.zshrc

Una vez que tengas (por ejemplo) la carpeta bash/ con .bashrc dentro:

cd ~/dotfiles

Instalar un paquete
stow bash # → crea symlink ~/.bashrc → ~/dotfiles/bash/.bashrc
stow git
stow vim

Instalar múltiples paquetes
stow bash git vim nvim kitty zsh

Resultado:

~/.bashrc -> dotfiles/bash/.bashrc
~/.gitconfig -> dotfiles/git/.gitconfig
~/.vimrc -> dotfiles/vim/.vimrc

4.3.2 Estructura Compleja

~/dotfiles/
��� shell/
� ��� .bashrc
� ��� .zshrc
� ��� .config/
� ��� bash/
� � ��� aliases.bash
� ��� zsh/
� ��� aliases.zsh
��� terminal/
� ��� .config/
� ��� kitty/
� � ��� kitty.conf
� � ��� themes/

GESTIÓN DE DOTFILES CON GNU STOW 20

� ��� alacritty/
� ��� alacritty.yml
��� editor/

��� .config/
��� nvim/

��� init.lua
��� lua/

��� plugins.lua

5 Instalación de Paquetes

5.1 Proceso de Instalación

5.1.1 Tree Folding (Plegado de Árbol)

Stow intenta crear el mínimo número de symlinks posible.
Ejemplo 1: Target Vacío

Estado inicial:
~/ (vacío, sin ~/.config/)

Paquete:
~/dotfiles/nvim/

��� .config/
��� nvim/

��� init.lua

Comando:
cd ~/dotfiles
stow nvim

Resultado (tree folding):
~/.config -> dotfiles/nvim/.config/

En lugar de:
~/.config/nvim/init.lua -> ...
Stow crea un symlink al directorio completo

Ejemplo 2: Target con Archivos Existentes

Estado inicial:
~/.config/

��� kitty/ # ya existe
��� kitty.conf

Paquete:
~/dotfiles/nvim/

��� .config/
��� nvim/

GESTIÓN DE DOTFILES CON GNU STOW 21

��� init.lua

Comando:
stow nvim

Resultado (NO puede hacer tree folding):
~/.config/ # directorio real

��� kitty/ # ya existía
� ��� kitty.conf
��� nvim -> ../dotfiles/nvim/.config/nvim/

5.1.2 Tree Unfolding (Desplegado de Árbol)

Cuando un symlink plegado debe ser “abierto” para acomodar otro paquete.
Escenario:

Estado inicial:
~/.config -> dotfiles/nvim/.config/

Instalar otro paquete:
~/dotfiles/kitty/

��� .config/
��� kitty/

��� kitty.conf

Comando:
stow kitty

Proceso de unfolding:
1. Eliminar symlink: ~/.config
2. Crear directorio: ~/.config/
3. Crear symlinks:
~/.config/nvim -> ../dotfiles/nvim/.config/nvim/
~/.config/kitty -> ../dotfiles/kitty/.config/kitty/

5.2 Instalación Básica

Crea el directorio
mkdir ~/dotfiles

Navegar al stow directory
cd ~/dotfiles

Instalar un paquete
stow nvim

Instalar múltiples paquetes

GESTIÓN DE DOTFILES CON GNU STOW 22

stow nvim zsh git kitty

Instalar todos los paquetes
stow */

5.3 Instalación con Verificación

Dry run primero (simular)
stow -nv nvim

Si todo OK, instalar realmente
stow nvim

Verificar symlinks creados
ls -la ~/.config/nvim

5.4 Instalación Selectiva

Solo paquetes de terminal
stow kitty alacritty tmux

Solo paquetes de shell
stow bash zsh fish

Solo paquetes de editor
stow nvim vim emacs

6 Desinstalación de Paquetes

6.1 Proceso de Desinstalación

6.1.1 Eliminación de Symlinks

Paquete instalado:
~/.zshrc -> dotfiles/zsh/.zshrc

Desinstalar:
cd ~/dotfiles
stow -D zsh

Resultado:
~/.zshrc eliminado (porque era symlink a stow package)

6.1.2 Eliminación de Directorios Vacíos

GESTIÓN DE DOTFILES CON GNU STOW 23

Antes:
~/.config/

��� nvim -> ../dotfiles/nvim/.config/nvim/

Desinstalar:
stow -D nvim

Después:
~/.config/ eliminado (si quedó vacío)

6.1.3 Tree Refolding (Re-plegado)

Después de eliminar symlinks, si un directorio contiene solo symlinks a un único pa-
quete, Stow lo “re-pliega”.

Escenario:

Estado actual:
~/.config/

��� nvim -> ../dotfiles/nvim/.config/nvim/
��� kitty -> ../dotfiles/kitty/.config/kitty/

Desinstalar kitty:
stow -D kitty

Resultado (refolding):
~/.config -> dotfiles/nvim/.config/

6.2 Desinstalación Básica

Navegar al stow directory
cd ~/dotfiles

Desinstalar un paquete
stow -D nvim

Desinstalar múltiples paquetes
stow -D nvim zsh git

Desinstalar todos los paquetes
stow -D */

6.3 Desinstalación con Verificación

Dry run primero
stow -Dnv nvim

Si todo OK, desinstalar realmente

GESTIÓN DE DOTFILES CON GNU STOW 24

stow -D nvim

Verificar que symlinks fueron eliminados
ls -la ~/.config/nvim

6.4 Desinstalación Parcial

Desinstalar solo configuraciones de terminal
stow -D kitty alacritty tmux

Mantener el resto

7 Reinstalación de Paquetes

7.1 Comando Restow

Restow = Unstow + Stow
stow -R nvim
stow --restow nvim

7.2 Cuándo Usar Restow

1. Después de actualizar un paquete:

Editaste archivos en ~/dotfiles/nvim/
cd ~/dotfiles
stow -R nvim

Esto actualiza los symlinks si la estructura cambió

2. Para limpiar symlinks obsoletos:

Eliminaste archivos del paquete
stow -R nvim

Restow elimina symlinks huérfanos

3. Después de cambiar estructura:

Moviste archivos dentro del paquete
Antes: nvim/.vimrc
Ahora: nvim/.config/nvim/init.lua

stow -R nvim

7.3 Restow vs Delete + Stow

GESTIÓN DE DOTFILES CON GNU STOW 25

Método 1: Restow (recomendado)
stow -R nvim

Método 2: Manual (equivalente)
stow -D nvim
stow nvim

Ventaja de -R: más rápido, optimizado

8 Gestión de Dotfiles

8.1 Setup Inicial

8.1.1 Crear Estructura

Crear directorio para dotfiles
mkdir -p ~/dotfiles
cd ~/dotfiles

Inicializar Git
git init

8.1.2 Mover Configuraciones Existentes

Método manual:

Crear paquete
mkdir -p ~/dotfiles/zsh

Mover archivos
mv ~/.zshrc ~/dotfiles/zsh/
mv ~/.zshenv ~/dotfiles/zsh/

Stow
cd ~/dotfiles
stow zsh

Con script:

#!/bin/bash
migrate-to-stow.sh

DOTFILES="$HOME/dotfiles"
mkdir -p "$DOTFILES"

Migrar zsh
mkdir -p "$DOTFILES/zsh"
mv ~/.zshrc "$DOTFILES/zsh/"

GESTIÓN DE DOTFILES CON GNU STOW 26

mv ~/.zshenv "$DOTFILES/zsh/"

Migrar nvim
mkdir -p "$DOTFILES/nvim/.config"
mv ~/.config/nvim "$DOTFILES/nvim/.config/"

Migrar git
mkdir -p "$DOTFILES/git"
mv ~/.gitconfig "$DOTFILES/git/"

Stow todo
cd "$DOTFILES"
stow zsh nvim git

8.1.3 Usar --adopt (Con Precaución)

Crear estructura primero
mkdir -p ~/dotfiles/nvim/.config
mkdir ~/dotfiles/nvim/.config/nvim

Adoptar configuración existente
cd ~/dotfiles
stow --adopt nvim

Esto MUEVE ~/.config/nvim/* a ~/dotfiles/nvim/.config/nvim/
Y luego crea el symlink

8.2 Workflow Diario

8.2.1 Editar Configuraciones

Los symlinks te permiten editar en cualquier lugar:

Opción 1: Editar en home (a través del symlink)
nvim ~/.zshrc # Edita ~/dotfiles/zsh/.zshrc

Opción 2: Editar directamente en dotfiles
nvim ~/dotfiles/zsh/.zshrc # Mismo archivo

8.2.2 Agregar Nueva Aplicación

1. Crear paquete
cd ~/dotfiles
mkdir -p new-app/.config/new-app

2. Agregar archivos

GESTIÓN DE DOTFILES CON GNU STOW 27

cp -r ~/.config/new-app/* new-app/.config/new-app/

3. Remover originales
rm -rf ~/.config/new-app

4. Stow
stow new-app

5. Commit a Git
git add new-app/
git commit -m "Add new-app configuration"

8.2.3 Sincronizar con Git

cd ~/dotfiles

Después de cambios
git add .
git commit -m "Update nvim configuration"
git push origin main

En otra máquina
git pull origin main
stow nvim # o stow -R nvim si ya estaba instalado

8.3 Manejo de Archivos Sensibles

8.3.1 Estrategia 1: .gitignore

~/dotfiles/.gitignore
Ignorar archivos sensibles

SSH keys
.ssh/id_*
.ssh/*.pem

Contraseñas
.netrc
.authinfo

Tokens
.config/gh/hosts.yml

8.3.2 Estrategia 2: Archivos Template

GESTIÓN DE DOTFILES CON GNU STOW 28

Crear template sin datos sensibles
~/dotfiles/git/.gitconfig.local.template
[user]

name = YOUR_NAME
email = YOUR_EMAIL

.gitignore
.gitconfig.local

Script de setup
#!/bin/bash
if [! -f ~/dotfiles/git/.gitconfig.local]; then

cp ~/dotfiles/git/.gitconfig.local.template \
~/dotfiles/git/.gitconfig.local

echo "Edit ~/dotfiles/git/.gitconfig.local"
fi

8.3.3 Estrategia 3: Encriptación

Usar git-crypt o similar
cd ~/dotfiles
git-crypt init

Especificar qué encriptar
.gitattributes
.netrc filter=git-crypt diff=git-crypt
.ssh/id_* filter=git-crypt diff=git-crypt

8.4 Estructura para Múltiples Hosts

~/dotfiles/
��� common/ # Compartido entre todos
� ��� git/
� ��� tmux/
��� desktop/ # Solo desktop
� ��� kde/
� ��� i3/
��� laptop/ # Solo laptop
� ��� power-management/
��� server/ # Solo servers

��� ssh/

Script de instalación por host:

#!/bin/bash
install.sh

GESTIÓN DE DOTFILES CON GNU STOW 29

HOSTNAME=$(hostname)

Instalar común
cd ~/dotfiles/common
stow */

Instalar específico del host
case "$HOSTNAME" in

desktop-main)
cd ~/dotfiles/desktop
stow */
;;

laptop-work)
cd ~/dotfiles/laptop
stow */
;;

server-*)
cd ~/dotfiles/server
stow */
;;

esac

9 Ignore Lists

9.1 Tipos de Ignore Lists

9.1.1 Built-in (Predeterminado)

Stow ignora automáticamente:

RCS
.+,v
CVS
\.\#.+ # CVS conflict files / emacs lock files
\.cvsignore
\.svn
_darcs
\.hg
\.git
\.gitignore
\.gitmodules
.+~ # emacs backup files
\#.*\# # emacs autosave files
^/README.*
^/LICENSE.*
^/COPYING

9.1.2 Global Ignore List

Archivo: ~/.stow-global-ignore

GESTIÓN DE DOTFILES CON GNU STOW 30

~/.stow-global-ignore

Archivos de respaldo
.*\.bak
.*\.old
.*\.orig

Temporales
.*\.swp
.*\.tmp

OS específicos
\.DS_Store
Thumbs\.db

IDEs
\.idea
\.vscode

Build artifacts
node_modules
__pycache__
*.pyc

9.1.3 Package-Local Ignore List

Archivo: <package>/.stow-local-ignore

~/dotfiles/nvim/.stow-local-ignore

Plugin managers
^/\.config/nvim/plugin/packer_compiled\.lua

Cache
^/\.config/nvim/.*\.cache/

Logs
^/\.config/nvim/.*\.log

Lazy-lock
^/\.config/nvim/lazy-lock\.json

9.2 Sintaxis de Ignore Lists

9.2.1 Reglas de Matching

1. Expresiones con / (path completo):

GESTIÓN DE DOTFILES CON GNU STOW 31

Match contra path completo desde raíz del paquete
^/README.* # README en raíz
^/\.config/nvim/cache/ # Directorio cache específico

2. Expresiones sin / (basename):

Match contra nombre del archivo/directorio
README.* # Cualquier README en cualquier ubicación
.*\.log # Archivos .log en cualquier ubicación

9.2.2 Ejemplos Prácticos

Ejemplo 1: Ignorar documentación:

.stow-local-ignore
^/README.*
^/LICENSE.*
^/CHANGELOG.*
^/docs/

Ejemplo 2: Ignorar archivos temporales:

.stow-local-ignore
.*\.swp$
.*\.swo$
.*~$
\#.*\#$

Ejemplo 3: Ignorar por aplicación:

nvim/.stow-local-ignore
^/\.config/nvim/plugin/
^/\.config/nvim/.*\.cache/
lazy-lock\.json

zsh/.stow-local-ignore
\.zcompdump
\.zsh_history

9.3 Precedencia de Ignore Lists

1. .stow-local-ignore (en paquete)
↓ (si no existe)

2. ~/.stow-global-ignore
↓ (si no existe)

3. Built-in ignore list

9.4 Opción --ignore en CLI

GESTIÓN DE DOTFILES CON GNU STOW 32

Ignorar específicos para esta ejecución
stow --ignore='.*\.orig' --ignore='.*\.dist' nvim

Equivalente a expresión OR
stow --ignore='.*\.orig|.*\.dist' nvim

Combina con ignore lists existentes

10 Opciones Avanzadas

10.1 Tree Folding Control

10.1.1 --no-folding

Desactiva tree folding completamente.
Sin –no-folding (default):

Resultado:
~/.config -> dotfiles/nvim/.config/

Con –no-folding:

Resultado:
~/.config/ # directorio real

��� nvim -> ../dotfiles/nvim/.config/nvim/

Uso:

stow --no-folding nvim

10.2 Adopt Mode

10.2.1 --adopt

ADVERTENCIA: Modifica el contenido del stow directory.
Escenario:

Tienes configuración existente:
~/.config/nvim/init.lua

Quieres adoptarla en tu paquete:
~/dotfiles/nvim/.config/nvim/ (vacío)

Comando:
cd ~/dotfiles
stow --adopt nvim

Resultado:
1. ~/.config/nvim/init.lua → movido a ~/dotfiles/nvim/.config/nvim/init.lua
2. ~/.config/nvim/init.lua → se convierte en symlink

GESTIÓN DE DOTFILES CON GNU STOW 33

Uso con Git:

1. Adoptar archivos
stow --adopt nvim

2. Ver diferencias
cd nvim
git diff

3. Decidir qué mantener
git add -p # Añadir selectivamente
o
git checkout HEAD -- . # Descartar cambios adoptados

10.3 Defer y Override

10.3.1 --defer

Evita stowing si el archivo ya está stowed por otro paquete.
Escenario:

paquete-a tiene:
paquete-a/

��� .config/
��� shared/

��� config.txt

paquete-b tiene:
paquete-b/

��� .config/
��� shared/

��� config.txt

Instalar A primero:
stow paquete-a # OK

Instalar B con defer:
stow --defer='.config/shared/config.txt' paquete-b
B no sobrescribirá config.txt de A

10.3.2 --override

Fuerza stowing incluso si ya existe symlink de otro paquete.
Escenario:

Mismo escenario de arriba

Instalar B con override:
stow --override='.config/shared/' paquete-b
B sobrescribirá todos los archivos en .config/shared/

GESTIÓN DE DOTFILES CON GNU STOW 34

10.4 Dotfiles Mode

10.4.1 --dotfiles

Transforma dot- en . al hacer stow.
Uso:

Estructura del paquete:
bash/

��� dot-bashrc
��� dot-bash_profile
��� dot-config/

��� bash/
��� aliases.bash

Stow con --dotfiles:
stow --dotfiles bash

Resultado:
~/.bashrc -> dotfiles/bash/dot-bashrc
~/.bash_profile -> dotfiles/bash/dot-bash_profile
~/.config/ ...

Ventajas:

• Mantiene paquetes visibles (no ocultos por .)
• Más fácil navegar en GUI
• Mejor para Git

Desventajas:

• Necesita usar --dotfiles siempre
• Puede confundir
• No estándar

Recomendación: Usar nombres normales con . en vez de dot-.

10.5 Multiple Stow Directories

Puedes tener múltiples stow directories para diferentes propósitos.
Ejemplo:

Estructura:
~/dotfiles/ # Personal configs

��� nvim/

~/work-dotfiles/ # Work configs
��� nvim/

Marcar como stow directories:

GESTIÓN DE DOTFILES CON GNU STOW 35

touch ~/dotfiles/.stow
touch ~/work-dotfiles/.stow

Stow desde diferentes directorios:
cd ~/dotfiles && stow nvim
cd ~/work-dotfiles && stow nvim

.stow file: Indica que un directorio es stow directory, protegiéndolo de operaciones de
unstow.

11 Integración con Git

11.1 Estructura de Repositorio

~/dotfiles/
��� .git/
��� .gitignore
��� .stowrc
��� README.md
��� LICENSE
��� install.sh
��� uninstall.sh
��� check-stow.sh
��� zsh/
� ��� .stow-local-ignore
� ��� .zshrc
� ��� .zshenv
��� nvim/
� ��� .stow-local-ignore
� ��� .config/
� ��� nvim/
��� ... (más paquetes)

11.2 .gitignore Completo

~/dotfiles/.gitignore

==
BACKUPS
==
*~
*.bak
*.old
*.orig
*.swp
*.swo

GESTIÓN DE DOTFILES CON GNU STOW 36

==
HISTORIA Y DATOS SENSIBLES
==

Shell history (puede contener comandos con passwords)
**/.zsh_history
**/.bash_history
**/.history

Credenciales
.netrc
.authinfo
**/.ssh/id_*
**/.ssh/*.pem

Tokens
**/.config/gh/hosts.yml

==
CACHE Y TEMPORALES
==

Directorios de cache
**/.cache/
**/__pycache__/
**/node_modules/

Compilados
*.pyc
*.zwc
.zcompdump*

Logs
**/*.log

==
ARCHIVOS DE SISTEMA
==
.DS_Store
Thumbs.db
desktop.ini

==
STOW
==
.stow

GESTIÓN DE DOTFILES CON GNU STOW 37

==
APLICACIONES ESPECÍFICAS
==

Zotero (database muy grande)
zotero/.zotero/zotero/*/zotero.sqlite*
zotero/.zotero/zotero/*/storage/

VSCode
vscode/.config/Code/User/workspaceStorage/
vscode/.config/Code/CachedData/
vscode/.config/Code/logs/

Obsidian
obsidian/Documents/thoughts/.obsidian/workspace
obsidian/Documents/thoughts/.obsidian/workspace.json

KDE
kde/.config/session/
kde/.cache/

11.3 Commits Best Practices

Commits semánticos

Agregar nueva aplicación
git commit -m "feat(tmux): Add tmux configuration"

Actualizar configuración
git commit -m "chore(nvim): Update LSP settings"

Fix
git commit -m "fix(zsh): Correct path to starship"

Documentación
git commit -m "docs: Update README with stow instructions"

Refactor
git commit -m "refactor(shell): Reorganize shell configs"

11.4 Branches Strategy

Main branch
main # Configuración estable

Feature branches

GESTIÓN DE DOTFILES CON GNU STOW 38

feature/add-tmux-config
feature/new-nvim-setup

Experimental
experiment/test-fish-shell
experiment/new-colorscheme

Host-specific
host/desktop-main
host/laptop-work
host/server-prod

11.5 Tags para Versiones

Tagear versiones estables
git tag -a v1.0.0 -m "Stable dotfiles v1.0.0"
git push origin v1.0.0

Ver tags
git tag -l

Checkout a tag
git checkout v1.0.0

11.6 Submodules para Plugins

Agregar plugin como submodule
cd ~/dotfiles/nvim/.config/nvim
git submodule add https://github.com/user/plugin.git pack/plugins/start/plugin

Actualizar submodules
git submodule update --init --recursive

Pull con submodules
git pull --recurse-submodules

11.7 GitHub Actions para Validación

.github/workflows/validate.yml

name: Validate Dotfiles

on: [push, pull_request]

jobs:

GESTIÓN DE DOTFILES CON GNU STOW 39

validate:
runs-on: ubuntu-latest

steps:
- uses: actions/checkout@v2

- name: Install stow
run: sudo apt-get install -y stow

- name: Test stow (dry run)
run: |

cd $GITHUB_WORKSPACE
stow -nv */

- name: Check for sensitive data
run: |

Verificar que no haya claves SSH
if find . -name "id_rsa" -o -name "id_ed25519"; then
echo "ERROR: SSH keys found!"
exit 1

fi

12 Troubleshooting

12.1 Problema 1: Conflictos al Stow

Error:

WARNING! stowing nvim would cause conflicts:
* existing target is neither a link nor a directory: .config/nvim/init.lua

All operations aborted.

Causa: Ya existe un archivo/directorio en el target que no es un symlink de Stow.
Soluciones:
Opción 1: Hacer backup y eliminar

Backup
cp ~/.config/nvim/init.lua ~/.config/nvim/init.lua.backup

Eliminar
rm ~/.config/nvim/init.lua

Stow
stow nvim

Opción 2: Usar –adopt (cuidado)

stow --adopt nvim
Mueve el archivo al paquete y crea symlink

GESTIÓN DE DOTFILES CON GNU STOW 40

Opción 3: Verificar y resolver manualmente

Ver qué está causando conflicto
stow -nv nvim

Resolver caso por caso

12.2 Problema 2: Symlinks Rotos

Error:

ls -la ~/.zshrc
lrwxrwxrwxzshrc -> dotfiles/zsh/.zshrc (broken)

Causa: El paquete fue movido o eliminado.
Soluciones:
Opción 1: Restow

cd ~/dotfiles
stow -R zsh

Opción 2: Desinstalar y reinstalar

stow -D zsh # Limpia symlinks rotos
stow zsh # Crea nuevos

Opción 3: Encontrar todos los symlinks rotos

Encontrar symlinks rotos en HOME
find ~/ -xtype l

Eliminar symlinks rotos de Stow
find ~/ -xtype l -lname '*dotfiles*' -delete

12.3 Problema 3: Directorio No Vacío

Error:

BUG in find_stowed_path? Absolute/relative mismatch

Causa: Stow está confundido por la estructura de directorios.
Solución:

Verificar que estás en el stow directory
pwd # Debe ser ~/dotfiles

Verificar estructura del paquete
tree nvim

Usar paths correctos
cd ~/dotfiles
stow -t ~ nvim

GESTIÓN DE DOTFILES CON GNU STOW 41

12.4 Problema 4: Tree Folding Inesperado

Problema: Stow crea symlink a directorio completo en lugar de entrar y enlazar archi-
vos.

Ejemplo:

Esperado:
~/.config/

��� nvim/ (directorio)
��� init.lua -> ~/dotfiles/nvim/.config/nvim/init.lua

Obtenido:
~/.config/

��� nvim -> ~/dotfiles/nvim/.config/nvim/ (symlink a directorio)

Causa: Stow hace tree folding por defecto para minimizar symlinks.
Solución si no lo quieres:

Usar --no-folding
stow --no-folding nvim

O desplegar manualmente
stow -D nvim # Remover
mkdir -p ~/.config/nvim # Crear directorio
stow --no-folding nvim # Stow sin folding

12.5 Problema 5: Permiso Denegado

Error:

cannot stow: permission denied

Causa: No tienes permisos para crear symlinks en target directory.
Soluciones:
Para /usr/local:

Cambiar ownership
sudo chown -R $USER:$USER /usr/local

O usar sudo (no recomendado)
sudo stow -t /usr/local myapp

Para HOME:

Verificar ownership
ls -ld ~
drwxr-xr-x 50 user user ...

Si no eres owner:
sudo chown -R $USER:$USER ~

GESTIÓN DE DOTFILES CON GNU STOW 42

12.6 Problema 6: Stow No Encuentra Paquete

Error:

stow: Cannot read package description: No such file or directory

Causa: No estás en el stow directory o el paquete no existe.
Solución:

Verificar ubicación
pwd

Listar paquetes disponibles
ls -d */

Cambiar a stow directory
cd ~/dotfiles

Stow
stow nvim

12.7 Problema 7: .stowrc No Se Aplica

Problema: Las opciones en .stowrc no se usan.
Causas y soluciones:
1. Archivo en ubicación incorrecta:

.stowrc debe estar en:
- Directorio actual (donde ejecutas stow)
- O ~/

Verificar:
ls -la .stowrc
ls -la ~/.stowrc

2. Sintaxis incorrecta:

Correcto:
--target=/home/user

Incorrecto:
target=/home/user # Sin --

3. Variables no expandidas:

Use $HOME con comillas si es necesario
--target=$HOME

GESTIÓN DE DOTFILES CON GNU STOW 43

12.8 Problema 8: Stow Muy Lento

Causa: Directorios muy grandes o muchos archivos.
Soluciones:
1. Usar ignore lists:

Ignorar directorios grandes
~/.stow-global-ignore
node_modules
__pycache__
.cache
storage

2. Evitar stowing todo junto:

En lugar de:
stow */ # Lento si hay muchos paquetes

Hacer:
stow nvim zsh git # Solo los necesarios

3. Simplificar estructura:

Dividir paquetes grandes en paquetes más pequeños

13 Scripts de Automatización

13.1 Script 1: install.sh Completo

Ya proporcioné un ejemplo arriba. Aquí una versión más robusta:

#!/bin/bash
~/dotfiles/install.sh

set -e

SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
DOTFILES="$SCRIPT_DIR"
BACKUP_DIR="$HOME/dotfiles-backup-$(date +%Y%m%d-%H%M%S)"
LOG_FILE="$DOTFILES/install.log"

Colores
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
BLUE='\033[0;34m'
NC='\033[0m'

Logging

GESTIÓN DE DOTFILES CON GNU STOW 44

log() {
echo -e "$1" | tee -a "$LOG_FILE"

}

log_info() {
log "${BLUE}[$(date +'%Y-%m-%d %H:%M:%S')]${NC} ${GREEN}[INFO]${NC} $1"

}

log_warn() {
log "${BLUE}[$(date +'%Y-%m-%d %H:%M:%S')]${NC} ${YELLOW}[WARN]${NC} $1"

}

log_error() {
log "${BLUE}[$(date +'%Y-%m-%d %H:%M:%S')]${NC} ${RED}[ERROR]${NC} $1"

}

Verificar dependencias
check_dependencies() {

log_info "Verificando dependencias..."

if ! command -v stow &> /dev/null; then
log_error "Stow no está instalado"
read -p "¿Instalar stow? [Y/n] " -n 1 -r
echo
if [[! $REPLY =~ ^[Nn]$]]; then

if command -v apt &> /dev/null; then
sudo apt update && sudo apt install -y stow

elif command -v pacman &> /dev/null; then
sudo pacman -S stow

elif command -v brew &> /dev/null; then
brew install stow

else
log_error "No se pudo instalar stow automáticamente"
exit 1

fi
else

exit 1
fi

fi

log_info "� Dependencias OK"
}

Backup de archivo/directorio existente
backup_if_exists() {

local path="$1"
local name="$2"

GESTIÓN DE DOTFILES CON GNU STOW 45

if [-e "$path"] && [! -L "$path"]; then
log_warn "Existe: $path"
mkdir -p "$BACKUP_DIR"
cp -r "$path" "$BACKUP_DIR/"
log_info "Backup: $name → $BACKUP_DIR/"
return 0

fi
return 1

}

Verificar conflictos antes de stow
check_conflicts() {

local package="$1"

if stow -nv "$package" 2>&1 | grep -q "WARNING\|ERROR"; then
return 1

fi
return 0

}

Stow paquete con manejo de errores
stow_package() {

local package="$1"
local force="${2:-false}"

if [! -d "$package"]; then
log_error "Paquete no existe: $package"
return 1

fi

log_info "Procesando: $package"

Check conflicts
if ! check_conflicts "$package"; then

log_warn "Conflictos detectados en: $package"

if ["$force" = "true"]; then
log_info "Forzando instalación..."
Aquí podrías implementar lógica de backup automático

else
read -p "¿Continuar? [y/N] " -n 1 -r
echo
if [[! $REPLY =~ ^[Yy]$]]; then

log_error "Saltado: $package"
return 1

fi
fi

GESTIÓN DE DOTFILES CON GNU STOW 46

fi

Stow
if stow -v "$package"; then

log_info "� Instalado: $package"
return 0

else
log_error "� Error al instalar: $package"
return 1

fi
}

Mostrar ayuda
show_help() {

cat << EOF
Uso: $0 [opciones] [paquetes...]

Opciones:
-h, --help Mostrar esta ayuda
-a, --all Instalar todos los paquetes
-f, --force Forzar instalación (saltear prompts)
-l, --list Listar paquetes disponibles
-d, --dry-run Simular sin hacer cambios

Ejemplos:
$0 nvim zsh git # Instalar paquetes específicos
$0 --all # Instalar todo
$0 --list # Ver paquetes disponibles

EOF
}

Listar paquetes disponibles
list_packages() {

log_info "Paquetes disponibles:"
cd "$DOTFILES"
for package in */; do

package=${package%/}
if ["$package" != ".git"] && [-d "$package"]; then

echo " - $package"
fi

done
}

Main
main() {

local force=false
local dry_run=false

GESTIÓN DE DOTFILES CON GNU STOW 47

local packages=()

Parse argumentos
while [[$# -gt 0]]; do

case $1 in
-h|--help)

show_help
exit 0
;;

-a|--all)
cd "$DOTFILES"
packages=($(ls -d */ | sed 's#/#' | grep -v '^\.'))
shift
;;

-f|--force)
force=true
shift
;;

-l|--list)
list_packages
exit 0
;;

-d|--dry-run)
dry_run=true
shift
;;

*)
packages+=("$1")
shift
;;

esac
done

Verificar que hay paquetes para instalar
if [${#packages[@]} -eq 0]; then

log_error "No se especificaron paquetes"
show_help
exit 1

fi

Iniciar log
log_info "=== Instalación de Dotfiles ==="
log_info "Directorio: $DOTFILES"
log_info "Paquetes: ${packages[*]}"

Verificar dependencias
check_dependencies

GESTIÓN DE DOTFILES CON GNU STOW 48

Cambiar a dotfiles directory
cd "$DOTFILES" || exit 1

Dry run si se especificó
if ["$dry_run" = true]; then

log_info "=== DRY RUN ==="
for package in "${packages[@]}"; do

log_info "Simulating: $package"
stow -nv "$package" || true

done
exit 0

fi

Instalar paquetes
local success=0
local failed=0

for package in "${packages[@]}"; do
if stow_package "$package" "$force"; then

((success++))
else

((failed++))
fi

done

Resumen
log_info ""
log_info "=== Resumen ==="
log_info "Exitosos: $success"
if [$failed -gt 0]; then

log_warn "Fallidos: $failed"
fi

if [-d "$BACKUP_DIR"]; then
log_info "Backups en: $BACKUP_DIR"

fi

log_info "Log completo en: $LOG_FILE"
}

Ejecutar
main "$@"

13.2 Script 2: update.sh

GESTIÓN DE DOTFILES CON GNU STOW 49

#!/bin/bash
~/dotfiles/update.sh

set -e

DOTFILES="$HOME/dotfiles"

cd "$DOTFILES"

echo "� Actualizando dotfiles..."

Pull latest changes
git pull origin main

Restow todos los paquetes instalados
for package in */; do

package=${package%/}

Verificar si está stowed
if find "$HOME" -maxdepth 2 -type l -lname "*$DOTFILES/$package/*" 2>/dev/null | grep -q .; then

echo "� Restowing $package..."
stow -R "$package"

fi
done

echo "� Actualización completa!"

13.3 Script 3: check.sh

#!/bin/bash
~/dotfiles/check.sh

DOTFILES="$HOME/dotfiles"

echo "� Estado de paquetes:"
echo "===================="

cd "$DOTFILES"

for package in */; do
package=${package%/}

if ["$package" = ".git"]; then
continue

fi

Buscar primer archivo del paquete

GESTIÓN DE DOTFILES CON GNU STOW 50

first_file=$(find "$package" -type f -o -type l | head -1)

if [-z "$first_file"]; then
echo "� $package (vacío)"
continue

fi

Convertir a path en HOME
home_path="$HOME/${first_file#$package/}"

if [-L "$home_path"]; then
target=$(readlink "$home_path")
if [["$target" == *"$DOTFILES/$package"*]]; then

echo "� $package"
else

echo "� $package (symlink apunta a: $target)"
fi

elif [-e "$home_path"]; then
echo "� $package (existe pero no es symlink)"

else
echo "� $package (no instalado)"

fi
done

Verificar symlinks rotos
echo ""
echo "� Verificando symlinks rotos..."
broken_links=$(find "$HOME" -maxdepth 3 -xtype l -lname "*$DOTFILES/*" 2>/dev/null)

if [-z "$broken_links"]; then
echo "� No hay symlinks rotos"

else
echo "� Symlinks rotos encontrados:"
echo "$broken_links"

fi

13.4 Script 4: clean.sh

#!/bin/bash
~/dotfiles/clean.sh

DOTFILES="$HOME/dotfiles"

echo "� Limpiando symlinks huérfanos..."

Encontrar symlinks rotos que apuntan a dotfiles
find "$HOME" -maxdepth 3 -xtype l -lname "*$DOTFILES/*" 2>/dev/null | while read -r broken_link; do

GESTIÓN DE DOTFILES CON GNU STOW 51

echo "Eliminando: $broken_link"
rm "$broken_link"

done

echo "� Limpieza completa!"

14 Casos de Uso Prácticos

14.1 Caso 1: Crear Dotfiles desde Cero (Primera Vez)

Escenario: Nunca has usado Stow, quieres empezar desde cero organizando tus confi-
guraciones.

Objetivo: Crear estructura de dotfiles, migrar configs existentes, versionar con Git.

14.1.1 Paso 1: Preparación

1.1 Instalar herramientas necesarias
sudo pacman -S stow git zsh starship # Arch/Archcraft
o
sudo apt install stow git zsh # Kubuntu/Debian

1.2 Verificar instalación
stow --version
git --version

1.3 Crear directorio para dotfiles
mkdir -p ~/dotfiles
cd ~/dotfiles

1.4 Inicializar Git
git init
git branch -M main

1.5 Configurar Git (si no está configurado)
git config user.name "Edison Achalma"
git config user.email "achalmaedison@gmail.com"

14.1.2 Paso 2: Crear Estructura de Paquetes

Crear paquetes para cada aplicación
cd ~/dotfiles

Git
mkdir -p git
Shell (Zsh)
mkdir -p shell
Terminal (Konsole)

GESTIÓN DE DOTFILES CON GNU STOW 52

mkdir -p terminal
Editor (VSCode)
mkdir -p vscode
KDE
mkdir -p kde

14.1.3 Paso 3: Migrar Configuraciones Existentes

3.1 Git (.gitconfig):

Verificar que existe
ls -la ~/.gitconfig

Mover al paquete
mv ~/.gitconfig git/

Verificar
ls -la git/.gitconfig

3.2 Shell (Zsh):

Crear estructura
mkdir -p shell

Mover archivos
mv ~/.zshrc shell/
mv ~/.zshenv shell/ 2>/dev/null || true # Si existe

Si tienes starship
mv ~/.config/starship.toml shell/ 2>/dev/null || true

Verificar
tree shell/
shell/
��� .zshrc
��� .zshenv

3.3 Terminal (Konsole):

Crear estructura que replica HOME
mkdir -p terminal/.config

Mover config de Konsole
mv ~/.config/konsolerc terminal/.config/

Si tienes perfiles personalizados
cp -r ~/.local/share/konsole terminal/.local/share/ 2>/dev/null || true

GESTIÓN DE DOTFILES CON GNU STOW 53

Verificar
tree terminal/
terminal/
��� .config/
��� konsolerc

3.4 VSCode:

Crear estructura
mkdir -p vscode/.config/Code/User

Mover settings
mv ~/.config/Code/User/settings.json vscode/.config/Code/User/
mv ~/.config/Code/User/keybindings.json vscode/.config/Code/User/

Snippets
mv ~/.config/Code/User/snippets vscode/.config/Code/User/ 2>/dev/null || true

Verificar
tree vscode/.config/Code/User/

3.5 KDE Plasma:

Crear estructura
mkdir -p kde/.config

Mover configuraciones principales
mv ~/.config/kdeglobals kde/.config/
mv ~/.config/dolphinrc kde/.config/
mv ~/.config/kwinrc kde/.config/
mv ~/.config/plasmarc kde/.config/
mv ~/.config/plasma-org.kde.plasma.desktop-appletsrc kde/.config/
mv ~/.config/mimeapps.list kde/.config/

Verificar
ls kde/.config/

14.1.4 Paso 4: Crear Ignore Lists

4.1 Global ignore:

cat > ~/.stow-global-ignore << 'EOF'
Backups
.*~
.*\.bak
.*\.old
.*\.orig
.*\.swp

GESTIÓN DE DOTFILES CON GNU STOW 54

Historia
\.zsh_history
\.bash_history

Cache
\.cache
__pycache__

Sistema
\.DS_Store
Thumbs\.db

Git
\.git
\.gitignore

Documentación
^/README.*
^/LICENSE.*
EOF

4.2 Ignore por paquete (shell):

cat > shell/.stow-local-ignore << 'EOF'
Historia (datos sensibles)
^/\.zsh_history
^/\.bash_history

Cache compilado
\.zcompdump
EOF

4.3 Ignore para VSCode:

cat > vscode/.stow-local-ignore << 'EOF'
Cache y logs
^/\.config/Code/CachedData/
^/\.config/Code/logs/
^/\.config/Code/User/workspaceStorage/

Backups automáticos
^/\.config/Code/Backups/
EOF

14.1.5 Paso 5: Crear .gitignore

GESTIÓN DE DOTFILES CON GNU STOW 55

cat > .gitignore << 'EOF'
==
BACKUPS
==
*~
*.bak
*.old
*.orig
*.swp
*.swo

==
DATOS SENSIBLES
==
Historia de shells
**/.zsh_history
**/.bash_history

SSH keys
**/.ssh/id_*
**/.ssh/*.pem

Credenciales
.netrc
.authinfo

==
CACHE Y TEMPORALES
==
**/.cache/
**/__pycache__/
*.pyc
.zcompdump*

==
STOW
==
.stow

==
LOGS
==
**/*.log
*.log

==
SISTEMA

GESTIÓN DE DOTFILES CON GNU STOW 56

==
.DS_Store
Thumbs.db
desktop.ini
EOF

14.1.6 Paso 6: Crear .stowrc

cat > .stowrc << 'EOF'
Target es siempre HOME
--target=$HOME

Ignorar archivos comunes
--ignore='^\.git'
--ignore='^README.*'
--ignore='^LICENSE.*'
--ignore='\.gitignore$'
--ignore='.*\.swp$'
--ignore='.*~$'
--ignore='^install\.sh$'
--ignore='^\.stowrc$'
EOF

14.1.7 Paso 7: Instalar con Stow (Primera Vez)

Navegar a dotfiles
cd ~/dotfiles

Dry run primero para cada paquete
stow -nv git
stow -nv shell
stow -nv terminal
stow -nv vscode
stow -nv kde

Si todo OK, instalar realmente
stow git shell terminal vscode kde

Verificar symlinks
ls -la ~/.gitconfig
lrwxrwxrwxgitconfig -> dotfiles/git/.gitconfig

ls -la ~/.zshrc
lrwxrwxrwxzshrc -> dotfiles/shell/.zshrc

ls -la ~/.config/konsolerc
lrwxrwxrwx ... konsolerc -> ../dotfiles/terminal/.config/konsolerc

GESTIÓN DE DOTFILES CON GNU STOW 57

14.1.8 Paso 8: Verificar que Todo Funciona

8.1 Verificar Git
git config --list | head -5

8.2 Verificar Zsh
cat ~/.zshrc | head -10

8.3 Verificar VSCode
cat ~/.config/Code/User/settings.json | head -10

8.4 Abrir aplicaciones para probar
code # VSCode debe cargar tu config
konsole # Konsole debe tener tu configuración

14.1.9 Paso 9: Crear Scripts de Ayuda

9.1 Script de instalación:

cat > install.sh << 'EOF'
#!/bin/bash
set -e

DOTFILES="$HOME/dotfiles"

echo "� Instalando dotfiles..."

cd "$DOTFILES"

Lista de paquetes
PACKAGES=(

"git"
"shell"
"terminal"
"vscode"
"kde"

)

Instalar cada paquete
for pkg in "${PACKAGES[@]}"; do

echo "� Instalando $pkg..."
stow "$pkg"

done

echo "� ¡Instalación completa!"
EOF

chmod +x install.sh

GESTIÓN DE DOTFILES CON GNU STOW 58

9.2 Script de verificación:

cat > check.sh << 'EOF'
#!/bin/bash

DOTFILES="$HOME/dotfiles"

echo "� Verificando dotfiles..."
echo ""

cd "$DOTFILES"

for pkg in */; do
pkg=${pkg%/}

Buscar primer archivo
first_file=$(find "$pkg" -type f | head -1)

if [-z "$first_file"]; then
continue

fi

Path en HOME
home_path="$HOME/${first_file#$pkg/}"

if [-L "$home_path"]; then
echo "� $pkg"

else
echo "� $pkg (no instalado)"

fi
done
EOF

chmod +x check.sh

14.1.10 Paso 10: Crear Repositorio en GitHub

10.1 Agregar todo a Git
cd ~/dotfiles
git add .

10.2 Commit inicial
git commit -m "Initial commit: Estructura básica de dotfiles

- Git configuration
- Zsh/Starship setup
- Konsole terminal config
- VSCode settings

GESTIÓN DE DOTFILES CON GNU STOW 59

- KDE Plasma configuration"

10.3 Crear repo en GitHub (vía navegador o gh CLI)
Opción A: Navegador
Ve a https://github.com/new
Nombre: .dotfiles
Descripción: "Dotfiles para Archcraft/Kubuntu con Stow"
Público o Privado
NO inicializar con README (ya lo tienes)

Opción B: GitHub CLI
gh repo create .dotfiles --public --source=. --remote=origin

10.4 Agregar remote y push
git remote add origin https://github.com/achalmaedison/.dotfiles.git
git push -u origin main

14.1.11 Paso 11: Crear README.md

cat > README.md << 'EOF'

Dotfiles

Configuraciones personales para Archcraft/Kubuntu gestionadas con GNU Stow.

Estructura

``
~/dotfiles/
��� git/ # Git config
��� shell/ # Zsh + Starship
��� terminal/ # Konsole
��� vscode/ # Visual Studio Code
��� kde/ # KDE Plasma
``

Instalación

``bash
Clonar
git clone https://github.com/achalmaedison/.dotfiles.git ~/dotfiles

Instalar Stow
sudo pacman -S stow # Arch
o
sudo apt install stow # Debian/Ubuntu

GESTIÓN DE DOTFILES CON GNU STOW 60

Instalar todo
cd ~/dotfiles
./install.sh

O instalar selectivo
stow git shell terminal
``

Actualizar

``bash
cd ~/dotfiles
git pull
stow -R */
``

Requisitos

- stow
- git
- zsh
- starship (opcional)
- VSCode (opcional)
- KDE Plasma (opcional)
EOF

git add README.md
git commit -m "docs: Add README"
git push

14.2 Caso 2: Replicar Dotfiles en Laptop Nueva

Escenario: Acabas de comprar/instalar una laptop nueva con Archcraft y quieres repli-
car tu setup completo.

Objetivo: Clonar tu repo de dotfiles e instalar todo en la nueva máquina.

14.2.1 Paso 1: Preparar Nueva Máquina

1.1 Actualizar sistema (Archcraft/Arch)
sudo pacman -Syu

1.2 Instalar herramientas base
sudo pacman -S git stow zsh base-devel

1.3 Verificar HOME vacío (opcional)
ls -la ~/ | grep "^\." | wc -l
Deberías ver solo archivos básicos del sistema

GESTIÓN DE DOTFILES CON GNU STOW 61

14.2.2 Paso 2: Backup de Configs Existentes (Precaución)

2.1 Crear directorio de backup
mkdir -p ~/dotfiles-backup-$(date +%Y%m%d)
BACKUP_DIR=~/dotfiles-backup-$(date +%Y%m%d)

2.2 Backup de archivos que podrían existir
cp ~/.zshrc "$BACKUP_DIR/" 2>/dev/null || true
cp ~/.gitconfig "$BACKUP_DIR/" 2>/dev/null || true
cp -r ~/.config/Code "$BACKUP_DIR/" 2>/dev/null || true

echo "Backup guardado en: $BACKUP_DIR"
ls -la "$BACKUP_DIR"

14.2.3 Paso 3: Clonar Repositorio

3.1 Clonar tu repo
cd ~
git clone https://github.com/achalmaedison/.dotfiles.git dotfiles

3.2 Verificar contenido
cd dotfiles
ls -la

Deberías ver:
git/
shell/
terminal/
vscode/
kde/
install.sh
.gitignore
README.md

14.2.4 Paso 4: Revisar y Ajustar (Si Necesario)

4.1 Ver qué paquetes hay
ls -d */
git/ kde/ shell/ terminal/ vscode/

4.2 Ver estructura de un paquete
tree shell/
shell/
��� .zshrc
��� .zshenv

4.3 (Opcional) Editar configs antes de instalar

GESTIÓN DE DOTFILES CON GNU STOW 62

Por ejemplo, cambiar username en git
nano git/.gitconfig

14.2.5 Paso 5: Instalar Dependencias

5.1 Aplicaciones de tu setup
sudo pacman -S \

zsh \
starship \
konsole \
code \ # VSCode (si está en repos)
plasma-desktop \
dolphin \
kate \
okular

5.2 Si usas AUR (yay/paru)
VSCode desde AUR
yay -S visual-studio-code-bin

Starship (si no está en repos oficiales)
yay -S starship-bin

5.3 Verificar instalaciones
which zsh
which starship
which code

14.2.6 Paso 6: Dry Run (Simulación)

Navegar a dotfiles
cd ~/dotfiles

Simular instalación para ver qué pasaría
stow -nv git
stow -nv shell
stow -nv terminal
stow -nv vscode
stow -nv kde

Verificar que no hay errores
Si hay conflictos, verás warnings

14.2.7 Paso 7: Resolver Conflictos (Si Existen)

Si ves algo como:

GESTIÓN DE DOTFILES CON GNU STOW 63

WARNING! stowing shell would cause conflicts:
* existing target is neither a link nor a directory: .zshrc

Resolver:

Opción A: Eliminar archivo existente
rm ~/.zshrc

Opción B: Mover a backup (más seguro)
mv ~/.zshrc ~/dotfiles-backup-$(date +%Y%m%d)/

Luego intentar stow nuevamente
stow -nv shell

14.2.8 Paso 8: Instalar Todo

Opción A: Con script (recomendado):

cd ~/dotfiles
./install.sh

Opción B: Manual:

cd ~/dotfiles

Instalar uno por uno
stow git
echo "� Git instalado"

stow shell
echo "� Shell instalado"

stow terminal
echo "� Terminal instalado"

stow vscode
echo "� VSCode instalado"

stow kde
echo "� KDE instalado"

Opción C: Todo de una vez:

cd ~/dotfiles
stow git shell terminal vscode kde

14.2.9 Paso 9: Verificar Instalación

GESTIÓN DE DOTFILES CON GNU STOW 64

9.1 Verificar symlinks creados
ls -la ~/.gitconfig
lrwxrwxrwxgitconfig -> dotfiles/git/.gitconfig

ls -la ~/.zshrc
lrwxrwxrwxzshrc -> dotfiles/shell/.zshrc

ls -la ~/.config/Code/User/settings.json
lrwxrwxrwx ... settings.json -> ../../../../dotfiles/vscode/.config/Code/User/settings.json

9.2 Usar script de verificación
cd ~/dotfiles
./check.sh

14.2.10 Paso 10: Configurar Shell

10.1 Cambiar shell a Zsh (si no lo es)
chsh -s /bin/zsh

10.2 Logout y login para aplicar
O simplemente:
exec zsh

10.3 Verificar que Zsh cargó tu config
echo $SHELL
/bin/zsh

Ver prompt (si usas starship)
starship --version

14.2.11 Paso 11: Instalar Dependencias Específicas

11.1 Extensiones de VSCode:

Si guardaste lista de extensiones
(Opción: guardar en dotfiles)
code --list-extensions > ~/dotfiles/vscode/extensions.txt

En nueva máquina:
while read -r ext; do

code --install-extension "$ext"
done < ~/dotfiles/vscode/extensions.txt

11.2 Plugins de Zsh (si usas):

Oh-My-Zsh
sh -c "$(curl -fsSL https://raw.github.com/ohmyzsh/ohmyzsh/master/tools/install.sh)"

GESTIÓN DE DOTFILES CON GNU STOW 65

Zsh plugins (ejemplo: zsh-autosuggestions)
git clone https://github.com/zsh-users/zsh-autosuggestions \

~/.oh-my-zsh/custom/plugins/zsh-autosuggestions

11.3 Temas de KDE (si los tienes):

Si tienes temas personalizados en dotfiles
Instalarlos desde System Settings

14.2.12 Paso 12: Probar Todo

12.1 Git
git config --list | grep user
user.name=Edison Achalma
user.email=achalmaedison@gmail.com

12.2 Zsh
cat ~/.zshrc | head -5

12.3 VSCode
code
Debería cargar con tu configuración

12.4 Konsole
konsole
Debería usar tu configuración

12.5 KDE
Logout/login para ver cambios en KDE

14.2.13 Paso 13: Ajustes Finales

Si algo no funciona, hacer debug:

Ver qué apunta cada symlink
find ~ -maxdepth 2 -type l -ls | grep dotfiles

Si un symlink está roto:
stow -D paquete-con-problema
stow paquete-con-problema

Verificar logs
journalctl --user -xe | grep -i error

14.3 Caso 3: Actualizar Configs y Sincronizar

Escenario:Has estado usando tus dotfiles y has hecho cambios en tu máquina principal.
Quieres sincronizar con GitHub y otras máquinas.

GESTIÓN DE DOTFILES CON GNU STOW 66

14.3.1 Paso 1: Identificar Cambios

1.1 Ver qué archivos cambiaron
cd ~/dotfiles
git status

Ejemplo de output:
modified: shell/.zshrc
modified: vscode/.config/Code/User/settings.json

1.2 Ver diferencias específicas
git diff shell/.zshrc
git diff vscode/.config/Code/User/settings.json

1.3 Ver todos los cambios
git diff

14.3.2 Paso 2: Probar Cambios Localmente

Si editaste configs directamente en HOME (a través de symlinks),
los cambios ya están en ~/dotfiles/

2.1 Verificar que todo funciona
source ~/.zshrc # Para shell
code # Abrir VSCode para verificar settings

2.2 Si hay problemas, revertir temporalmente
cd ~/dotfiles
git checkout -- shell/.zshrc # Revertir cambios
Probar de nuevo

14.3.3 Paso 3: Commit Cambios

cd ~/dotfiles

3.1 Agregar archivos modificados
git add shell/.zshrc
git add vscode/.config/Code/User/settings.json

O agregar todo:
git add -A

3.2 Ver qué se va a commitear
git status

3.3 Commit con mensaje descriptivo

GESTIÓN DE DOTFILES CON GNU STOW 67

git commit -m "chore(shell): Update Zsh aliases and PATH

- Add alias for git status
- Update PATH to include ~/.local/bin
- Remove deprecated exports"

git commit -m "feat(vscode): Enable format on save

- Set editor.formatOnSave to true
- Add Python formatting rules
- Update keybindings for terminal"

14.3.4 Paso 4: Push a GitHub

4.1 Push cambios
git push origin main

4.2 Verificar en GitHub
Ir a https://github.com/achalmaedison/.dotfiles
Deberías ver tus commits recientes

14.3.5 Paso 5: Actualizar Otras Máquinas

En laptop/otra máquina:

5.1 Pull cambios
cd ~/dotfiles
git pull origin main

5.2 Los symlinks reflejan cambios automáticamente!
cat ~/.zshrc # Ya tiene los cambios

5.3 Recargar configs
source ~/.zshrc # Shell
VSCode se recarga automáticamente

5.4 Si hay cambios en estructura (archivos nuevos/eliminados):
stow -R shell # Restow para actualizar symlinks
stow -R vscode

14.3.6 Paso 6: Manejar Conflictos (Si Existen)

Si modificaste el mismo archivo en dos máquinas:

cd ~/dotfiles
git pull origin main

Si hay conflicto:

GESTIÓN DE DOTFILES CON GNU STOW 68

CONFLICT (content): Merge conflict in shell/.zshrc

6.1 Ver conflicto
git status
both modified: shell/.zshrc

6.2 Editar archivo
nano shell/.zshrc

Verás marcadores:
<<<<<<< HEAD
(tu cambio local)
=======
(cambio de GitHub)
>>>>>>> origin/main

6.3 Resolver manualmente, eliminar marcadores

6.4 Marcar como resuelto
git add shell/.zshrc
git commit -m "merge: Resolve conflict in .zshrc"
git push

14.4 Caso 4: Agregar Nueva Aplicación (Kate Editor)

Escenario: Instalaste Kate y quieres agregar su configuración a tus dotfiles.

14.4.1 Paso 1: Usar Kate y Configurar

1.1 Instalar Kate
sudo pacman -S kate

1.2 Abrir y configurar
kate

Configurar:
- Settings → Configure Kate
- Cambiar tema, shortcuts, plugins, etc.
- Cerrar Kate (configs se guardan automáticamente)

14.4.2 Paso 2: Localizar Archivos de Config

2.1 Archivos de configuración están en ~/.config/
ls -la ~/.config/ | grep kate
drwxr-xr-x - achalmaedison kate/

2.2 Ver qué hay dentro

GESTIÓN DE DOTFILES CON GNU STOW 69

ls -la ~/.config/kate/
katerc
externaltools/
formatting/
lspclient/

2.3 También puede haber datos en ~/.local/share/
ls -la ~/.local/share/ | grep kate

14.4.3 Paso 3: Crear Paquete Kate

3.1 Crear estructura que replica HOME
cd ~/dotfiles
mkdir -p kate/.config

3.2 Copiar configs (NO mover todavía)
cp -r ~/.config/kate kate/.config/

3.3 También copiar datos locales si existen
mkdir -p kate/.local/share
cp -r ~/.local/share/kate kate/.local/share/ 2>/dev/null || true

3.4 Verificar estructura
tree kate/
kate/
��� .config/
� ��� kate/
� ��� katerc
� ��� externaltools/
� ��� formatting/
� ��� lspclient/
��� .local/
��� share/
��� kate/

14.4.4 Paso 4: Crear Ignore List para Kate

Crear ignore para archivos que no queremos versionar
cat > kate/.stow-local-ignore << 'EOF'
Sesiones y cache
^/\.config/kate/sessions/
^/\.local/share/kate/.*\.cache

Logs
^/\.config/kate/.*\.log

Archivos temporales

GESTIÓN DE DOTFILES CON GNU STOW 70

^/\.config/kate/.*\.tmp
^/\.config/kate/.*\.swp
EOF

14.4.5 Paso 5: Test Stow (Dry Run)

cd ~/dotfiles

5.1 Ver qué haría stow
stow -nv kate

Deberías ver algo como:
LINK: .config/kate => dotfiles/kate/.config/kate

14.4.6 Paso 6: Hacer Backup y Eliminar Original

6.1 Backup por seguridad
cp -r ~/.config/kate ~/backup-kate-$(date +%Y%m%d)

6.2 Eliminar original
rm -rf ~/.config/kate
rm -rf ~/.local/share/kate # Si copiaste esto también

6.3 Verificar que se eliminó
ls ~/.config/ | grep kate
(no debería aparecer nada)

14.4.7 Paso 7: Stow Kate

cd ~/dotfiles

7.1 Instalar con stow
stow kate

7.2 Verificar symlinks
ls -la ~/.config/ | grep kate
lrwxrwxrwx - achalmaedison kate -> ../dotfiles/kate/.config/kate

7.3 Verificar que Kate funciona
kate
Debería abrir con tu configuración

14.4.8 Paso 8: Versionar con Git

GESTIÓN DE DOTFILES CON GNU STOW 71

cd ~/dotfiles

8.1 Agregar al staging
git add kate/

8.2 Commit
git commit -m "feat(kate): Add Kate editor configuration

- Custom keybindings
- LSP configuration
- Theme and appearance settings
- External tools setup"

8.3 Push
git push origin main

14.4.9 Paso 9: Actualizar README

cd ~/dotfiles

Agregar Kate a la lista de paquetes
nano README.md

Agregar:
- kate/ # Kate editor

Commit cambio
git add README.md
git commit -m "docs: Add Kate to README"
git push

14.4.10 Paso 10: Actualizar Script de Instalación

Si tienes install.sh, agregar kate
nano install.sh

Agregar "kate" a la lista de PACKAGES:
PACKAGES=(
"git"
"shell"
"terminal"
"vscode"
"kde"
"kate" # <-- Agregar esto
)

GESTIÓN DE DOTFILES CON GNU STOW 72

git add install.sh
git commit -m "chore(scripts): Add kate to install script"
git push

14.5 Caso 5: Migrar de Kubuntu a Archcraft

Escenario:Usabas Kubuntu, ahora instalaste Archcraft. Quieres migrar tus dotfiles pero
adaptándolos.

14.5.1 Paso 1: Evaluar Diferencias

1.1 En tu Kubuntu original, ver qué tienes
cd ~/dotfiles
ls -d */

Ejemplo:
git/ shell/ terminal/ vscode/ kde/ digikam/ okular/ ...

1.2 Identificar qué es compatible con Archcraft
� Compatible: git, shell, vscode
� Adaptar: kde (Archcraft puede usar i3/bspwm)
� No necesario: apps específicas de Kubuntu

14.5.2 Paso 2: En Archcraft Nueva

2.1 Instalar Stow
sudo pacman -S stow git

2.2 Clonar dotfiles
cd ~
git clone https://github.com/achalmaedison/.dotfiles.git dotfiles

14.5.3 Paso 3: Crear Branch para Archcraft

cd ~/dotfiles

3.1 Crear branch específica
git checkout -b archcraft-setup

3.2 Ver qué paquetes hay
ls -d */

14.5.4 Paso 4: Instalar Paquetes Universales

GESTIÓN DE DOTFILES CON GNU STOW 73

cd ~/dotfiles

4.1 Paquetes que funcionan en cualquier distro
stow git
stow shell
stow terminal # Si Archcraft usa Konsole, sino adaptar

14.5.5 Paso 5: Adaptar o Crear Nuevos Paquetes

5.1 Window Manager (Si Archcraft usa i3/bspwm):

Crear nuevo paquete para i3 (ejemplo)
mkdir -p i3/.config/i3

Configurar i3
i3-config-wizard
O copiar config existente

Mover config al paquete
mv ~/.config/i3/config i3/.config/i3/

Stow
stow i3

5.2 Terminal (Si Archcraft usa otro terminal):

Supongamos que Archcraft usa Alacritty en vez de Konsole

Crear paquete
mkdir -p alacritty/.config/alacritty

Config de Alacritty
cat > alacritty/.config/alacritty/alacritty.yml << 'EOF'
Alacritty configuration
font:

size: 11.0
normal:
family: JetBrains Mono

window:
opacity: 0.95

colors:
Tu esquema de colores...

EOF

Stow
stow alacritty

GESTIÓN DE DOTFILES CON GNU STOW 74

5.3 Polybar (Si Archcraft lo usa):

mkdir -p polybar/.config/polybar

Copiar config de Archcraft default
cp /etc/polybar/config polybar/.config/polybar/

Personalizar
nano polybar/.config/polybar/config

Stow
stow polybar

14.5.6 Paso 6: No Instalar Paquetes Incompatibles

NO hacer stow de paquetes específicos de Kubuntu/KDE:
- kde/
- plasma-org.kde.plasma.desktop-appletsrc
- etc.

Estos causarían errores en Archcraft

14.5.7 Paso 7: Commit Cambios

cd ~/dotfiles

Agregar nuevos paquetes
git add i3/ alacritty/ polybar/

Commit en branch archcraft
git commit -m "feat(archcraft): Add i3, Alacritty, Polybar configs

- i3 window manager configuration
- Alacritty terminal setup
- Polybar panel configuration"

Push branch
git push origin archcraft-setup

14.5.8 Paso 8: Estrategia de Branches

Opción A: Mantener branches separadas:

Branch main: Para Kubuntu
Branch archcraft-setup: Para Archcraft

Puedes hacer cherry-pick de commits específicos:

GESTIÓN DE DOTFILES CON GNU STOW 75

git checkout main
git cherry-pick <commit-hash> # Traer cambio específico de otra branch

Opción B: Usar estructura de directorios:

Reorganizar dotfiles:
~/dotfiles/
��� common/ # Configs universales
� ��� git/
� ��� shell/
� ��� vscode/
��� kubuntu/ # Específicos de Kubuntu
� ��� kde/
� ��� konsole/
��� archcraft/ # Específicos de Archcraft

��� i3/
��� alacritty/
��� polybar/

Instalar según distro:
cd ~/dotfiles/common && stow */
cd ~/dotfiles/archcraft && stow */

14.5.9 Paso 9: Script de Instalación por Distro

cat > install-arch.sh << 'EOF'
#!/bin/bash
Install script para Archcraft

DOTFILES="$HOME/dotfiles"

echo "� Instalando dotfiles para Archcraft..."

Common packages
cd "$DOTFILES/common"
stow git shell vscode

Archcraft-specific
cd "$DOTFILES/archcraft"
stow i3 alacritty polybar rofi

echo "� ¡Instalación completa!"
EOF

chmod +x install-arch.sh

GESTIÓN DE DOTFILES CON GNU STOW 76

14.5.10 Paso 10: Mantener Ambos Sistemas

Cuando hagas cambios en configs comunes (git, shell, vscode):

1. Hacer cambio en cualquier máquina
cd ~/dotfiles
nano common/shell/.zshrc

2. Commit
git add common/shell/.zshrc
git commit -m "chore(shell): Update aliases"

3. Push
git push origin main

4. En otra máquina (Kubuntu o Archcraft):
git pull origin main
Los symlinks se actualizan automáticamente

14.6 Caso 6: Probar Nueva Configuración Sin Romper

Escenario: Quieres probar una nueva configuración de Neovim sin afectar tu setup ac-
tual.

14.6.1 Paso 1: Crear Branch Experimental

cd ~/dotfiles

1.1 Crear branch
git checkout -b experiment/nvim-lazyvim

1.2 Verificar que estás en la branch
git branch
* experiment/nvim-lazyvim
main

14.6.2 Paso 2: Crear Paquete Alternativo

2.1 Crear nuevo paquete con nombre distinto
mkdir -p nvim-lazy/.config

2.2 Instalar LazyVim (ejemplo)
git clone https://github.com/LazyVim/starter nvim-lazy/.config/nvim

2.3 Estructura
tree nvim-lazy/.config/nvim/ -L 1

GESTIÓN DE DOTFILES CON GNU STOW 77

14.6.3 Paso 3: Desinstalar Neovim Actual

3.1 Unstow config actual (si existe)
cd ~/dotfiles
stow -D nvim 2>/dev/null || true

3.2 Verificar que se eliminó symlink
ls -la ~/.config/ | grep nvim
No debería aparecer nada

14.6.4 Paso 4: Instalar Nueva Config

4.1 Stow nueva config
stow nvim-lazy

4.2 Verificar symlink
ls -la ~/.config/nvim
lrwxrwxrwx - achalmaedison nvim -> ../../dotfiles/nvim-lazy/.config/nvim

14.6.5 Paso 5: Probar

5.1 Abrir Neovim
nvim

LazyVim se instalará automáticamente
Probar todas las features

5.2 Usar por varios días
Evaluar si te gusta

14.6.6 Paso 6: Decidir Qué Hacer

Opción A: Mantener nueva config (si te gustó):

cd ~/dotfiles

1. Eliminar config vieja
rm -rf nvim/ # O hacer backup

2. Renombrar nueva
mv nvim-lazy nvim

3. Restow
stow -R nvim

4. Commit
git add .

GESTIÓN DE DOTFILES CON GNU STOW 78

git commit -m "refactor(nvim): Switch to LazyVim configuration"

5. Merge a main
git checkout main
git merge experiment/nvim-lazyvim

6. Push
git push origin main

7. Eliminar branch experimental
git branch -d experiment/nvim-lazyvim

Opción B: Volver a config anterior (si no te gustó):

cd ~/dotfiles

1. Checkout a main
git checkout main

2. Unstow experimental
stow -D nvim-lazy

3. Restow original
stow nvim

4. Eliminar paquete experimental
rm -rf nvim-lazy/

5. Eliminar branch
git branch -D experiment/nvim-lazyvim

Opción C: Mantener ambas (para casos específicos):

Tener dos configs de Neovim:
~/dotfiles/
��� nvim/ # Config principal
��� nvim-lazy/ # Config alternativa

Alias en shell para cambiar:
alias nvim-main='stow -D nvim-lazy && stow nvim && nvim'
alias nvim-lazy='stow -D nvim && stow nvim-lazy && nvim'

14.7 Caso 7: Sincronizar Múltiples Máquinas en Tiempo Real

Escenario: Trabajas en 3 máquinas (desktop, laptop, servidor) y quieres mantener dot-
files sincronizados.

GESTIÓN DE DOTFILES CON GNU STOW 79

14.7.1 Configuración Inicial (Una Vez)

En cada máquina:

1. Clonar dotfiles
cd ~
git clone https://github.com/achalmaedison/.dotfiles.git dotfiles

2. Instalar
cd dotfiles
./install.sh

3. Configurar Git con pull automático (opcional)
git config pull.rebase true # Rebase en lugar de merge

14.7.2 Workflow Diario

Máquina A (Desktop) - Hacer Cambios:

1. Editar configs normalmente
nano ~/.zshrc # Edita a través del symlink

2. Commit y push
cd ~/dotfiles
git add shell/.zshrc
git commit -m "chore(shell): Add new alias for docker"
git push origin main

Máquina B (Laptop) - Recibir Cambios:

1. Pull cambios
cd ~/dotfiles
git pull origin main

2. Los symlinks se actualizan automáticamente!
cat ~/.zshrc # Ya tiene el cambio

3. Recargar shell
source ~/.zshrc
O
exec zsh

Máquina C (Servidor) - Recibir Cambios:

Mismo proceso
cd ~/dotfiles
git pull origin main
source ~/.zshrc

GESTIÓN DE DOTFILES CON GNU STOW 80

14.7.3 Automatizar con Cron (Opcional)

Crear script de sync
cat > ~/dotfiles/sync.sh << 'EOF'
#!/bin/bash
cd "$HOME/dotfiles"

Pull cambios silenciosamente
git pull origin main --quiet

Log
echo "$(date): Dotfiles sincronizados" >> ~/dotfiles/sync.log
EOF

chmod +x ~/dotfiles/sync.sh

Agregar a crontab (sync cada hora)
crontab -e

Agregar línea:
0 * * * * $HOME/dotfiles/sync.sh

14.7.4 Manejar Conflictos Automáticamente

Script más robusto
cat > ~/dotfiles/sync.sh << 'EOF'
#!/bin/bash
cd "$HOME/dotfiles"

Stash cambios locales si existen
git stash

Pull
git pull origin main --quiet

Reapply stash
git stash pop

Si hay conflictos, notificar
if [$? -ne 0]; then

notify-send "Dotfiles" "Conflicto detectado, revisar manualmente"
fi
EOF

14.7.5 Usar Git Hooks (Avanzado)

GESTIÓN DE DOTFILES CON GNU STOW 81

Pre-commit hook para validar antes de commit
cat > ~/dotfiles/.git/hooks/pre-commit << 'EOF'
#!/bin/bash

Verificar que no hay datos sensibles
if git diff --cached | grep -i "password\|secret\|token"; then

echo "ERROR: Posible dato sensible detectado!"
exit 1

fi

exit 0
EOF

chmod +x ~/dotfiles/.git/hooks/pre-commit

14.8 Caso 8: Compartir Dotfiles con Equipo/Lab

Escenario: Trabajas en un lab con múltiples usuarios y quieren compartir configuracio-
nes base.

14.8.1 Paso 1: Crear Repo de Equipo

En GitHub, crear repo:
Nombre: lab-dotfiles
Acceso: Privado/Público según necesidad

Clonar
git clone https://github.com/lab/.lab-dotfiles.git ~/lab-dotfiles

14.8.2 Paso 2: Estructura Multi-Usuario

cd ~/lab-dotfiles

Crear estructura
mkdir -p {common,users}

Common: Configs compartidas
mkdir -p common/{git,shell,terminal}

Users: Configs personales
mkdir -p users/{alice,bob,carlos}

14.8.3 Paso 3: Setup Común

GESTIÓN DE DOTFILES CON GNU STOW 82

Git config compartido (sin user.name/email)
cat > common/git/.gitconfig << 'EOF'
[core]

editor = nano
autocrlf = input

[alias]
st = status
co = checkout
br = branch

[push]
default = simple

EOF

Shell común
cat > common/shell/.zshrc << 'EOF'
Shared Zsh configuration for Lab

Common aliases
alias ll='ls -lah'
alias ..='cd ..'

Lab-specific paths
export LAB_DATA="/data/lab"
export LAB_TOOLS="/opt/lab-tools"

Source user-specific config if exists
[-f ~/.zshrc.local] && source ~/.zshrc.local
EOF

14.8.4 Paso 4: Configs Personales

Usuario Alice
cat > users/alice/.zshrc.local << 'EOF'
Alice's personal config

export EDITOR=nvim

alias mydata='cd /data/lab/alice'
EOF

Usuario Bob
cat > users/bob/.zshrc.local << 'EOF'
Bob's personal config

export EDITOR=vim

GESTIÓN DE DOTFILES CON GNU STOW 83

alias mydata='cd /data/lab/bob'
EOF

14.8.5 Paso 5: Script de Instalación

cat > install-lab.sh << 'EOF'
#!/bin/bash

USERNAME="$1"

if [-z "$USERNAME"]; then
echo "Uso: $0 <username>"
echo "Ejemplo: $0 alice"
exit 1

fi

DOTFILES="$HOME/lab-dotfiles"

Instalar común
cd "$DOTFILES/common"
stow git shell terminal

Instalar personal del usuario
if [-d "$DOTFILES/users/$USERNAME"]; then

cd "$DOTFILES/users/$USERNAME"
stow .
echo "� Configs de $USERNAME instaladas"

else
echo "� No hay configs personales para $USERNAME"

fi

echo "� Instalación completa para $USERNAME"
EOF

chmod +x install-lab.sh

14.8.6 Paso 6: Cada Usuario Instala

Usuario Alice:
cd ~/lab-dotfiles
./install-lab.sh alice

Usuario Bob:
cd ~/lab-dotfiles
./install-lab.sh bob

GESTIÓN DE DOTFILES CON GNU STOW 84

14.8.7 Paso 7: Actualizar Configs Compartidas

Cualquier usuario puede actualizar common/

1. Modificar
nano ~/lab-dotfiles/common/shell/.zshrc

2. Commit
cd ~/lab-dotfiles
git add common/shell/.zshrc
git commit -m "feat(shell): Add lab-wide utility function"

3. Push
git push origin main

4. Otros usuarios pull
git pull origin main
Cambios se aplican automáticamente via symlinks

14.8.8 Paso 8: Usuarios Agregan Sus Configs

Bob quiere agregar su config de Neovim

1. Crear su directorio personal
mkdir -p ~/lab-dotfiles/users/bob/.config

2. Copiar config
cp -r ~/.config/nvim ~/lab-dotfiles/users/bob/.config/

3. Commit (solo su carpeta)
cd ~/lab-dotfiles
git add users/bob/.config/nvim
git commit -m "feat(bob): Add Neovim configuration"
git push

Otros usuarios no se afectan

14.9 Caso 9: Migrar de Sistema Manual a Stow

Escenario: Tienes dotfiles en GitHub pero SIN Stow (todos en raíz del repo). Quieres
migrar a Stow.

14.9.1 Estado Inicial

Tu repo actual (sin Stow):
~/dotfiles/
��� .gitconfig

GESTIÓN DE DOTFILES CON GNU STOW 85

��� .zshrc
��� .zshenv
��� nvim/
� ��� init.lua
��� konsolerc
��� settings.json

Estructura plana, difícil de gestionar

14.9.2 Paso 1: Backup Completo

1. Backup de dotfiles actuales
cp -r ~/dotfiles ~/dotfiles-backup-$(date +%Y%m%d)

2. Backup de HOME
mkdir -p ~/home-backup
cp ~/.zshrc ~/home-backup/
cp ~/.gitconfig ~/home-backup/
etc...

14.9.3 Paso 2: Crear Nueva Estructura

cd ~/dotfiles

Crear directorios de paquetes
mkdir -p git shell nvim terminal vscode

14.9.4 Paso 3: Reorganizar Archivos

cd ~/dotfiles

Git
mv .gitconfig git/

Shell
mv .zshrc shell/
mv .zshenv shell/

Neovim (crear estructura correcta)
mkdir -p nvim/.config
mv nvim/ nvim/.config/nvim/

Terminal
mkdir -p terminal/.config
mv konsolerc terminal/.config/

GESTIÓN DE DOTFILES CON GNU STOW 86

VSCode
mkdir -p vscode/.config/Code/User
mv settings.json vscode/.config/Code/User/

14.9.5 Paso 4: Verificar Nueva Estructura

Debería verse así:
tree -L 3 ~/dotfiles/

~/dotfiles/
��� git/
� ��� .gitconfig
��� shell/
� ��� .zshrc
� ��� .zshenv
��� nvim/
� ��� .config/
� ��� nvim/
��� terminal/
� ��� .config/
� ��� konsolerc
��� vscode/
��� .config/
��� Code/
��� User/
��� settings.json

14.9.6 Paso 5: Eliminar Symlinks/Archivos Viejos de HOME

Eliminar configs de HOME (los vamos a recrear con Stow)
rm ~/.gitconfig
rm ~/.zshrc
rm ~/.zshenv
rm -rf ~/.config/nvim
rm ~/.config/konsolerc
rm ~/.config/Code/User/settings.json

14.9.7 Paso 6: Instalar con Stow

cd ~/dotfiles

Dry run primero
stow -nv git shell nvim terminal vscode

Si todo OK, instalar
stow git shell nvim terminal vscode

GESTIÓN DE DOTFILES CON GNU STOW 87

Verificar
ls -la ~/.gitconfig
ls -la ~/.zshrc
ls -la ~/.config/nvim

14.9.8 Paso 7: Commit Nueva Estructura

cd ~/dotfiles

Stage todo
git add -A

Ver cambios
git status

Commit
git commit -m "refactor: Migrate to GNU Stow structure

BREAKING CHANGE: Repository structure changed to use Stow

- Organized configs into packages (git, shell, nvim, etc.)
- Each package replicates HOME directory structure
- Use 'stow <package>' to install

Migration guide:
1. stow -D * (if already installed)
2. stow git shell nvim terminal vscode"

Push
git push origin main

14.9.9 Paso 8: Actualizar README

cat > README.md << 'EOF'
Dotfiles (Stow-managed)

Personal configurations managed with GNU Stow.

Structure

``
~/dotfiles/
��� git/ # Git config
��� shell/ # Zsh
��� nvim/ # Neovim
��� terminal/ # Konsole

GESTIÓN DE DOTFILES CON GNU STOW 88

��� vscode/ # VSCode
``

Installation

``bash
Install Stow
sudo pacman -S stow

Clone
git clone https://github.com/user/dotfiles.git ~/dotfiles

Install all
cd ~/dotfiles
stow */

Or selective
stow git shell nvim
``

Update

``bash
cd ~/dotfiles
git pull
stow -R */
``

EOF

git add README.md
git commit -m "docs: Update README for Stow"
git push

14.9.10 Paso 9: Crear Scripts

install.sh
cat > install.sh << 'EOF'
#!/bin/bash
cd "$HOME/dotfiles"
stow git shell nvim terminal vscode
echo "� Dotfiles installed"
EOF

chmod +x install.sh
git add install.sh
git commit -m "chore: Add install script"

GESTIÓN DE DOTFILES CON GNU STOW 89

git push

14.9.11 Paso 10: Limpiar Historial de Git (Opcional)

Si tu repo era muy grande con historia antigua,
puedes limpiarlo:

cd ~/dotfiles

Crear orphan branch
git checkout --orphan latest_branch

Add all files
git add -A

Commit
git commit -m "refactor: Fresh start with Stow structure"

Delete main
git branch -D main

Rename current branch to main
git branch -m main

Force push
git push -f origin main

14.10 Caso 10: Setup para Desarrollo Multi-Proyecto

Escenario: Trabajas en múltiples proyectos (Python, Web, Latex) y quieres configs es-
pecíficas por proyecto.

14.10.1 Estructura de Dotfiles

~/dotfiles/
��� common/ # Común a todo
� ��� git/
� ��� shell/
��� python-dev/ # Python development
� ��� nvim/
� ��� vscode/
��� web-dev/ # Web development
� ��� nvim/
� ��� vscode/
��� latex-writing/ # Academic writing

��� nvim/
��� texstudio/

GESTIÓN DE DOTFILES CON GNU STOW 90

14.10.2 Paso 1: Crear Estructura

cd ~/dotfiles

Común
mkdir -p common/{git,shell}

Python dev
mkdir -p python-dev/{nvim,vscode}

Web dev
mkdir -p web-dev/{nvim,vscode}

LaTeX
mkdir -p latex-writing/{nvim,texstudio}

14.10.3 Paso 2: Configs Comunes

Git (igual para todos)
cat > common/git/.gitconfig << 'EOF'
[user]

name = Edison Achalma
email = achalmaedison@gmail.com

[core]
editor = nvim

EOF

Shell base
cat > common/shell/.zshrc << 'EOF'
Common shell config

Aliases
alias gs='git status'
alias ll='ls -lah'

Load project-specific config
[-f ~/.zshrc.project] && source ~/.zshrc.project
EOF

14.10.4 Paso 3: Configs Específicas por Proyecto

Python Development:

Neovim para Python
cat > python-dev/nvim/.config/nvim/init.lua << 'EOF'
-- Python-focused Neovim config

GESTIÓN DE DOTFILES CON GNU STOW 91

-- LSP
require('lspconfig').pyright.setup{}

-- Python-specific keymaps
vim.keymap.set('n', '<leader>r', ':!python %<CR>')
EOF

VSCode para Python
cat > python-dev/vscode/.config/Code/User/settings.json << 'EOF'
{

"python.linting.enabled": true,
"python.linting.pylintEnabled": true,
"python.formatting.provider": "black"

}
EOF

Shell additions para Python
cat > python-dev/shell/.zshrc.project << 'EOF'
Python dev environment

export PYTHONPATH="$HOME/projects/python:$PYTHONPATH"

alias pytest='python -m pytest'
alias venv='python -m venv venv && source venv/bin/activate'
EOF

Web Development:

Neovim para Web
cat > web-dev/nvim/.config/nvim/init.lua << 'EOF'
-- Web-focused Neovim config

-- LSP for JS/TS
require('lspconfig').tsserver.setup{}

-- Live server
vim.keymap.set('n', '<leader>l', ':!live-server .<CR>')
EOF

VSCode para Web
cat > web-dev/vscode/.config/Code/User/settings.json << 'EOF'
{

"emmet.includeLanguages": {
"javascript": "javascriptreact"

},
"prettier.enable": true,
"editor.formatOnSave": true

GESTIÓN DE DOTFILES CON GNU STOW 92

}
EOF

14.10.5 Paso 4: Scripts de Activación

Script para activar proyecto Python
cat > ~/dotfiles/activate-python.sh << 'EOF'
#!/bin/bash

echo "� Activando entorno Python..."

cd ~/dotfiles

Unstow otros proyectos
stow -D web-dev/nvim 2>/dev/null || true
stow -D latex-writing/nvim 2>/dev/null || true

Stow común
stow common/*

Stow Python
stow python-dev/*

Copiar project-specific shell config
cp python-dev/shell/.zshrc.project ~/.zshrc.project

echo "� Entorno Python activado"
EOF

chmod +x ~/dotfiles/activate-python.sh

Script para activar proyecto Web
cat > ~/dotfiles/activate-web.sh << 'EOF'
#!/bin/bash

echo "� Activando entorno Web..."

cd ~/dotfiles

Unstow otros
stow -D python-dev/nvim 2>/dev/null || true
stow -D latex-writing/nvim 2>/dev/null || true

Stow común
stow common/*

Stow Web

GESTIÓN DE DOTFILES CON GNU STOW 93

stow web-dev/*

Shell config
cp web-dev/shell/.zshrc.project ~/.zshrc.project

echo "� Entorno Web activado"
EOF

chmod +x ~/dotfiles/activate-web.sh

14.10.6 Paso 5: Uso

Trabajar en proyecto Python
~/dotfiles/activate-python.sh
cd ~/projects/python/my-project
nvim # Abre con config de Python

Cambiar a proyecto Web
~/dotfiles/activate-web.sh
cd ~/projects/web/my-app
nvim # Abre con config de Web

14.10.7 Paso 6: Automatizar con Direnv (Avanzado)

Instalar direnv
sudo pacman -S direnv

En cada proyecto, crear .envrc
cd ~/projects/python/my-project
cat > .envrc << 'EOF'
#!/bin/bash
Activar entorno Python automáticamente
source "$HOME/dotfiles/activate-python.sh"
EOF

direnv allow

Ahora al entrar al directorio, se activa automáticamente

15 Mi Repositorio .dotfiles

15.1 Mi Estructura Actual

~/dotfiles/
��� git/
� ��� .gitconfig

GESTIÓN DE DOTFILES CON GNU STOW 94

��� kde/
� ��� .config/
� ��� kdeglobals
� ��� dolphinrc
� ��� ...
��� shell/
� ��� .zshrc
� ��� starship.toml
��� terminal/
� ��� .config/
� ��� konsolerc
��� vscode/
� ��� .config/
� ��� settings.json
� ��� keybindings.json
��� zotero/
� ��� .zotero/...
��� obsidian/
� ��� Documents/thoughts/.obsidian/
��� ... (más paquetes)

15.2 Implementación de Stow

15.2.1 Script install.sh

Mi install.sh actual debe usar Stow. Aquí está mi versión mejorada:

#!/bin/bash
~/dotfiles/install.sh

set -e

DOTFILES="$HOME/dotfiles"
BACKUP_DIR="$HOME/dotfiles-backup-$(date +%Y%m%d-%H%M%S)"

Colores
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
NC='\033[0m' # No Color

Funciones
log_info() {

echo -e "${GREEN}[INFO]${NC} $1"
}

log_warn() {
echo -e "${YELLOW}[WARN]${NC} $1"

GESTIÓN DE DOTFILES CON GNU STOW 95

}

log_error() {
echo -e "${RED}[ERROR]${NC} $1"

}

Verificar que Stow está instalado
if ! command -v stow &> /dev/null; then

log_error "Stow no está instalado"
log_info "Instalando stow..."
sudo apt update && sudo apt install -y stow

fi

Función para hacer backup
backup_if_exists() {

local file="$1"
if [-e "$file"] && [! -L "$file"]; then

mkdir -p "$BACKUP_DIR"
cp -r "$file" "$BACKUP_DIR/"
log_warn "Backup: $file -> $BACKUP_DIR/"

fi
}

Función para stow paquete
stow_package() {

local package="$1"

log_info "Stowing $package..."

Dry run primero
if stow -nv "$package" 2>&1 | grep -q "WARNING"; then

log_warn "Conflicto detectado para $package"
read -p "¿Hacer backup y continuar? [y/N] " -n 1 -r
echo
if [[$REPLY =~ ^[Yy]$]]; then

Hacer backup de archivos conflictivos
(aquí necesitarías lógica más sofisticada)
stow "$package"

else
log_error "Saltando $package"
return 1

fi
else

stow "$package"
log_info "� $package instalado"

fi
}

GESTIÓN DE DOTFILES CON GNU STOW 96

Cambiar a dotfiles directory
cd "$DOTFILES" || exit 1

Lista de paquetes a instalar
PACKAGES=(

"git"
"shell"
"terminal"
"kde"
"vscode"
"nvim"
"kitty"
... más paquetes

)

Opción para instalar todo o selectivo
if ["$1" == "all"]; then

PACKAGES=($(ls -d */ | sed 's#/#'))
log_info "Instalando TODOS los paquetes"

elif [$# -gt 0]; then
PACKAGES=("$@")
log_info "Instalando paquetes especificados: ${PACKAGES[*]}"

fi

Instalar paquetes
for package in "${PACKAGES[@]}"; do

stow_package "$package" || true
done

log_info "Instalación completa!"
if [-d "$BACKUP_DIR"]; then

log_info "Backups guardados en: $BACKUP_DIR"
fi

Uso:

Instalar paquetes específicos
./install.sh git shell terminal

Instalar todo
./install.sh all

Ver qué haría sin hacer cambios
(modificar script para agregar -n flag)

GESTIÓN DE DOTFILES CON GNU STOW 97

15.2.2 Script para Desinstalar

#!/bin/bash
~/dotfiles/uninstall.sh

DOTFILES="$HOME/dotfiles"

cd "$DOTFILES" || exit 1

if [$# -eq 0]; then
echo "Uso: $0 <paquete1> [paquete2] ..."
echo "O: $0 all"
exit 1

fi

if ["$1" == "all"]; then
PACKAGES=($(ls -d */ | sed 's#/#'))

else
PACKAGES=("$@")

fi

for package in "${PACKAGES[@]}"; do
echo "Unstowing $package..."
stow -D "$package"
echo "� $package desinstalado"

done

15.2.3 Reorganizar Paquetes Problemáticos

Zotero: Ubicación no estándar

Actual:
zotero/

��� .zotero/zotero/25vfdnq5.default/
��� prefs.js

Problema: .zotero está en HOME pero tiene subdirectorios profundos

Solución 1: Usar como está (funciona)
stow zotero
Resultado: ~/.zotero/... → dotfiles/zotero/.zotero/...

Solución 2: Si solo quieres prefs.js, simplificar:
zotero/

��� .zotero/
��� zotero/

��� 25vfdnq5.default/
��� prefs.js

GESTIÓN DE DOTFILES CON GNU STOW 98

Obsidian: Ruta específica

Actual:
obsidian/

��� Documents/thoughts/.obsidian/

Problema: No está en .config sino en Documents

Solución: Está bien así, Stow lo maneja
stow obsidian
Resultado: ~/Documents/thoughts/.obsidian → ...

15.2.4 .stowrc

Crear ~/dotfiles/.stowrc:

~/dotfiles/.stowrc

Target es siempre HOME
--target=$HOME

Ignorar archivos comunes
--ignore='.git'
--ignore='README.*'
--ignore='LICENSE.*'
--ignore='.*.swp'
--ignore='.*~'
--ignore='install.sh'
--ignore='uninstall.sh'
--ignore='.stowrc'

Con esto, no necesitas especificar -t ~ cada vez.

15.2.5 .stow-local-ignore por Paquete

Para vscode:

~/dotfiles/vscode/.stow-local-ignore

No stow extensiones (solo configuración)
^/\.config/Code/CachedData/
^/\.config/Code/logs/
^/\.config/Code/User/workspaceStorage/

Para kde:

~/dotfiles/kde/.stow-local-ignore

Archivos de sesión y cache
^/\.config/session/
^/\.cache/

GESTIÓN DE DOTFILES CON GNU STOW 99

Para shell:

~/dotfiles/shell/.stow-local-ignore

Historia de shells (puede tener info sensible)
^/\.zsh_history
^/\.bash_history

Archivos compilados
\.zcompdump

15.2.6 Script de Verificación

#!/bin/bash
~/dotfiles/check-stow.sh

Verificar qué está stowed

DOTFILES="$HOME/dotfiles"

echo "Paquetes stowed:"
echo "================"

cd "$DOTFILES" || exit 1

for package in */; do
package=${package%/}

Encontrar primer archivo del paquete
first_file=$(find "$package" -type f | head -1)

if [-z "$first_file"]; then
continue

fi

Convertir a path en HOME
home_path="$HOME/${first_file#$package/}"

if [-L "$home_path"]; then
target=$(readlink "$home_path")
if [["$target" == *"$DOTFILES/$package"*]]; then

echo "� $package"
else

echo "� $package (symlink apunta a otro lugar)"
fi

else
echo "� $package (no stowed)"

GESTIÓN DE DOTFILES CON GNU STOW 100

fi
done

15.2.7 Actualizar .gitignore

~/dotfiles/.gitignore

Backups
*~
*.bak
*.old
*.orig
.*.swp

Datos sensibles
shell/.zsh_history
shell/.bash_history
.netrc
.authinfo

Cache y temporales
**/.cache/
**/__pycache__/
**/node_modules/

Logs
**/*.log

Sistema
.DS_Store
Thumbs.db

Archivos de Stow
.stow

Zotero database (demasiado grande)
zotero/.zotero/zotero/*/zotero.sqlite*

VSCode workspace storage
vscode/.config/Code/User/workspaceStorage/

15.2.8 Comandos Útiles

Navegar a dotfiles
cd ~/dotfiles

Instalar todo (primera vez)

GESTIÓN DE DOTFILES CON GNU STOW 101

./install.sh all

Instalar paquetes esenciales
./install.sh git shell terminal kde

Verificar qué está instalado
./check-stow.sh

Actualizar después de pull
git pull
stow -R */ # Restow todo

Desinstalar temporalmente para pruebas
stow -D vscode
hacer pruebas...
stow vscode # Reinstalar

Agregar nuevo paquete
mkdir new-app
crear estructura...
stow new-app
git add new-app/
git commit -m "Add new-app"

16 Workflows

16.1 Workflow 1: Configuración Inicial

Paso 1: Crear estructura
mkdir -p ~/dotfiles
cd ~/dotfiles
git init

Paso 2: Crear paquetes
mkdir -p zsh nvim git

Paso 3: Mover configs existentes
mv ~/.zshrc zsh/
mv ~/.config/nvim nvim/.config/
mv ~/.gitconfig git/

Paso 4: Stow
stow zsh nvim git

Paso 5: Verificar
ls -la ~/.zshrc # debe ser symlink

GESTIÓN DE DOTFILES CON GNU STOW 102

Paso 6: Git
git add .
git commit -m "Initial dotfiles"
git remote add origin git@github.com:user/dotfiles.git
git push -u origin main

16.2 Workflow 2: Día a Día

Editar configuración (desde cualquier lugar)
nvim ~/.config/nvim/init.lua # Edita a través del symlink

Commit cambios
cd ~/dotfiles
git add nvim/
git commit -m "Update nvim config: add new plugin"
git push

En otra máquina
cd ~/dotfiles
git pull
Los cambios se reflejan automáticamente (symlinks)

16.3 Workflow 3: Nueva Máquina

Clonar
git clone https://github.com/user/dotfiles.git ~/dotfiles

Instalar Stow
sudo apt install stow

Backup existentes (precaución)
mkdir ~/backup
cp ~/.zshrc ~/backup/ 2>/dev/null || true

Stow
cd ~/dotfiles
stow */

Verificar
ls -la ~/ | grep '\->'

Instalar dependencias de apps
(nvim plugins, zsh plugins, etc)

GESTIÓN DE DOTFILES CON GNU STOW 103

16.4 Workflow 4: Experimentar

Crear branch de experimento
cd ~/dotfiles
git checkout -b experiment-new-nvim

Modificar libremente
nvim nvim/.config/nvim/init.lua

Restow para aplicar
stow -R nvim

Probar...

Si funciona:
git checkout main
git merge experiment-new-nvim

Si no funciona:
git checkout main
stow -R nvim # Vuelve a main automáticamente

16.5 Workflow 5: Actualización Limpia

Pull cambios
cd ~/dotfiles
git pull origin main

Verificar qué cambió
git log -p --since="1 week ago"

Desinstalar y reinstalar (limpia symlinks obsoletos)
stow -D nvim
stow nvim

O usar restow
stow -R nvim

Verificar que funciona
nvim --version

17 Best Practices

17.1 Organización de Paquetes

DO:

GESTIÓN DE DOTFILES CON GNU STOW 104

Un paquete por aplicación
~/dotfiles/
��� nvim/
��� zsh/
��� git/

Replicar estructura de HOME exactamente
nvim/

��� .config/
��� nvim/

��� init.lua

DON’T:

Múltiples aplicaciones en un paquete
~/dotfiles/
��� configs/

��� .config/nvim/
��� .config/kitty/
��� .zshrc

Estructura diferente a HOME
nvim/

��� init.lua # � Falta .config/nvim/

17.2 Uso de Ignore Lists

DO:

Ignorar archivos sensibles
.stow-global-ignore
**/.history
**/.ssh/id_*
.netrc

Ignorar cache por paquete
nvim/.stow-local-ignore
^/\.config/nvim/plugin/packer_compiled\.lua

DON’T:

Commit archivos sensibles sin ignorar
git add ~/.ssh/id_rsa # � ¡NUNCA!

17.3 Commits y Mensajes

DO:

GESTIÓN DE DOTFILES CON GNU STOW 105

Commits descriptivos y atómicos
git commit -m "feat(nvim): Add LSP configuration for Rust"
git commit -m "fix(zsh): Correct path to starship prompt"

Un cambio lógico por commit

DON’T:

Commits genéricos
git commit -m "Update stuff"
git commit -m "Changes"

Múltiples cambios no relacionados en un commit

17.4 Testing Antes de Commit

DO:

Siempre test antes de commit
stow -D nvim # Desinstalar
stow nvim # Reinstalar
Verificar que funciona
git commit

Dry run en nueva máquina
stow -nv */

DON’T:

Commit sin probar
Cambios → commit → push → Rompe en otra máquina

17.5 Backup Siempre

DO:

Backup antes de stow en nueva máquina
mkdir ~/backup
cp -r ~/.config/nvim ~/backup/

Luego stow
stow nvim

DON’T:

Stow directamente sin backup
stow nvim # � Puede sobrescribir configs importantes

GESTIÓN DE DOTFILES CON GNU STOW 106

17.6 Documentación

DO:

README.md completo
- Qué paquetes hay
- Cómo instalar
- Dependencias
- Comandos útiles

Comentarios en configs
nvim/init.lua
-- LSP configuration
-- Requires: nvim-lspconfig plugin

DON’T:

README vacío o sin info
Configs sin comentarios

17.7 Estructura Consistente

DO:

Misma estructura en todos los paquetes
package/

��� .stow-local-ignore
��� README.md
��� (archivos que van en HOME)

DON’T:

Estructura inconsistente entre paquetes

17.8 Versionado

DO:

Tags para versiones estables
git tag -a v1.0.0 -m "Stable nvim config"

Branches para experimentar
git checkout -b experiment/new-theme

DON’T:

Todo en main sin tags
Experimentar directamente en main

GESTIÓN DE DOTFILES CON GNU STOW 107

18 Alternativas a Stow

18.1 Yadm (Yet Another Dotfiles Manager)

Ventajas:

• Git nativo, no symlinks
• Encriptación built-in
• Templates con Jinja2
• Bootstrap scripts

Desventajas:

• Menos control granular
• Todo en un repo

Instalar
sudo apt install yadm

Usar
yadm init
yadm add ~/.zshrc
yadm commit -m "Add zshrc"

18.2 Chezmoi

Ventajas:

• Templates
• Secrets management
• Cross-platform
• Estado vs archivos

Desventajas:

• Más complejo
• Curva de aprendizaje

Instalar
sh -c "$(curl -fsLS get.chezmoi.io)"

Usar
chezmoi init
chezmoi add ~/.zshrc

GESTIÓN DE DOTFILES CON GNU STOW 108

18.3 Dotbot

Ventajas:

• Basado en configuración YAML
• Bootstrapping automático
• Plugins

Desventajas:

• Otra herramienta que aprender
• Menos flexibilidad que Stow

install.conf.yaml
- link:

~/.zshrc: zshrc
~/.config/nvim: nvim

18.4 Bare Git Repository

Ventajas:

• Solo Git, no tools extra
• Total control

Desventajas:

• Más manual
• Conflictos con .gitignore

Setup
git init --bare $HOME/.dotfiles
alias config='/usr/bin/git --git-dir=$HOME/.dotfiles/ --work-tree=$HOME'
config config --local status.showUntrackedFiles no

Usar
config add .zshrc
config commit -m "Add zshrc"

18.5 Comparación

Característica GNU Stow yadm chezmoi dotbot
Repositorio
Git bare

Simplicidad Muy alta Alta Media Alta Media
Flexibilidad Muy alta Media Muy alta Media Muy alta
Soporte para
plantillas

No Parcial Completo
(Jinja2)

No No

GESTIÓN DE DOTFILES CON GNU STOW 109

Característica GNU Stow yadm chezmoi dotbot
Repositorio
Git bare

Manejo de
secretos

No Bueno Excelente
(integrado)

No No

Facilidad de
instalación

Muy
sencilla

Muy
sencilla

Muy sencilla Muy
sencilla

Sin instalación
adicional

Tamaño de la
comunidad

Grande Mediana Grande Pequeña N/A
(herramienta
nativa)

Curva de
aprendizaje

Baja Baja Media-alta Baja Media

Uso de enlaces
simbólicos

Sí
(principal)

No Sí (opcional) Sí No

Soporte
multiplataforma

Excelente Bueno Excelente Bueno Excelente

Recomendación: Stow es ideal si quieres:

• Simplicidad
• Control total
• Organización por paquetes
• Solo symlinks, sin magia

19 Conclusión

La gestión de dotfiles es una práctica esencial para optimizar el entorno de desarrollo
y asegurar la persistencia de las configuraciones personalizadas. GNU Stow, en particular, se
destaca por su simplicidad y eficacia al manejar enlaces simbólicos, especialmente cuando se
combina con Git para el versionado y la sincronización. Permite una modularidad excelente y
una replicación rápida de entornos.

Si bien existen alternativas más avanzadas como Chezmoi o YADM (que ofrecen
funciones adicionales como plantillas y cifrado de secretos) o soluciones declarativas como
NixOS/Home-Manager, Stow sigue siendo una opción robusta y preferida por muchos por su
enfoque directo y la curva de aprendizaje mínima. La clave es elegir la herramienta que mejor
se adapte a las necesidades y al nivel de complejidad deseado, siempre priorizando la seguridad
de la información sensible.

19.1 Comandos Esenciales

Instalar
stow paquete

Desinstalar
stow -D paquete

Reinstalar
stow -R paquete

GESTIÓN DE DOTFILES CON GNU STOW 110

Simular
stow -nv paquete

Ver qué hace
stow -vv paquete

Ignorar archivos
stow --ignore='patrón' paquete

Especificar directorios
stow -d ~/dotfiles -t ~ paquete

19.2 Recursos Adicionales

Documentación:

• Manual oficial: man stow
• Info pages: info stow
• Web: https://www.gnu.org/software/stow/

Comunidad:

• r/unixporn (ejemplos de dotfiles)
• GitHub topic: dotfiles
• YouTube: “dotfiles management”

Ejemplos de dotfiles con Stow:

• https://github.com/search?q=stow+dotfiles
• https://dotfiles.github.io/

20 Publicaciones Similares

Si te interesó este artículo, te recomendamos que explores otros blogs y recursos rela-
cionados que pueden ampliar tus conocimientos. Aquí te dejo algunas sugerencias:

1. Comandos De Informacion Windows
2. Adb
3. Limpieza Y Optimizacion De Pc
4. Usando Apk En Windown 11
5. Gestionar Versiones De Jdk En Kubuntu
6. Instalar Tor Browser
7. Crear Enlaces Duros O Hard Link En Linux
8. Comandos Vim
9. Guia De Git Y Github

10. 00 Primeros Pasos En Linux
11. 01 Introduccion Linux
12. 02 Distribuciones Linux
13. 03 Instalacion Linux
14. 04 Administracion Particiones Volumenes

https://chaska-x.netlify.app/operating-system/2017-05-21-comandos-de-informacion-windows/index.pdf
https://chaska-x.netlify.app/operating-system/2017-05-21-comandos-de-informacion-windows
https://chaska-x.netlify.app/operating-system/2019-06-19-adb/index.pdf
https://chaska-x.netlify.app/operating-system/2019-06-19-adb
https://chaska-x.netlify.app/operating-system/2021-08-17-limpieza-y-optimizacion-de-pc/index.pdf
https://chaska-x.netlify.app/operating-system/2021-08-17-limpieza-y-optimizacion-de-pc
https://chaska-x.netlify.app/operating-system/2021-10-21-usando-apk-en-windown-11/index.pdf
https://chaska-x.netlify.app/operating-system/2021-10-21-usando-apk-en-windown-11
https://chaska-x.netlify.app/operating-system/2022-05-12-gestionar-versiones-de-jdk-en-kubuntu/index.pdf
https://chaska-x.netlify.app/operating-system/2022-05-12-gestionar-versiones-de-jdk-en-kubuntu
https://chaska-x.netlify.app/operating-system/2022-07-21-instalar-tor-browser/index.pdf
https://chaska-x.netlify.app/operating-system/2022-07-21-instalar-tor-browser
https://chaska-x.netlify.app/operating-system/2022-08-14-crear-enlaces-duros-o-hard-link-en-linux/index.pdf
https://chaska-x.netlify.app/operating-system/2022-08-14-crear-enlaces-duros-o-hard-link-en-linux
https://chaska-x.netlify.app/operating-system/2022-09-27-comandos-vim/index.pdf
https://chaska-x.netlify.app/operating-system/2022-09-27-comandos-vim
https://chaska-x.netlify.app/operating-system/2023-02-16-guia-de-git-y-github/index.pdf
https://chaska-x.netlify.app/operating-system/2023-02-16-guia-de-git-y-github
https://chaska-x.netlify.app/operating-system/2023-05-02-00-primeros-pasos-en-linux/index.pdf
https://chaska-x.netlify.app/operating-system/2023-05-02-00-primeros-pasos-en-linux
https://chaska-x.netlify.app/operating-system/2023-06-17-01-introduccion-linux/index.pdf
https://chaska-x.netlify.app/operating-system/2023-06-17-01-introduccion-linux
https://chaska-x.netlify.app/operating-system/2023-06-18-02-distribuciones-linux/index.pdf
https://chaska-x.netlify.app/operating-system/2023-06-18-02-distribuciones-linux
https://chaska-x.netlify.app/operating-system/2023-06-19-03-instalacion-linux/index.pdf
https://chaska-x.netlify.app/operating-system/2023-06-19-03-instalacion-linux
https://chaska-x.netlify.app/operating-system/2023-06-20-04-administracion-particiones-volumenes/index.pdf
https://chaska-x.netlify.app/operating-system/2023-06-20-04-administracion-particiones-volumenes

GESTIÓN DE DOTFILES CON GNU STOW 111

15. Atajos De Teclado Y Comandos Para Usar Vim
16. Instalando Specitify
17. Gestiona Tus Dotfiles Con Gnu Stow

Esperamos que encuentres estas publicaciones igualmente interesantes y útiles. ¡Disfru-
ta de la lectura!

https://chaska-x.netlify.app/operating-system/2023-07-01-atajos-de-teclado-y-comandos-para-usar-vim/index.pdf
https://chaska-x.netlify.app/operating-system/2023-07-01-atajos-de-teclado-y-comandos-para-usar-vim
https://chaska-x.netlify.app/operating-system/2024-07-15-instalando-specitify/index.pdf
https://chaska-x.netlify.app/operating-system/2024-07-15-instalando-specitify
https://chaska-x.netlify.app/operating-system/2025-07-10-gestiona-tus-dotfiles-con-gnu-stow/index.pdf
https://chaska-x.netlify.app/operating-system/2025-07-10-gestiona-tus-dotfiles-con-gnu-stow

	Introduction
	Instalación
	Linux
	macOS
	Desde Fuente
	Verificar Instalación

	Conceptos Fundamentales
	Terminología Clave
	Package (Paquete)
	Target Directory (Directorio Objetivo)
	Stow Directory (Directorio Stow)
	Installation Image (Imagen de Instalación)
	Symlink (Enlace Simbólico)

	Jerarquía de Directorios

	Sintaxis y Comandos
	Sintaxis Básica
	Acciones Principales
	Stow (Instalar)
	Delete (Desinstalar)
	Restow (Reinstalar)

	Opciones de Directorio
	-d / --dir (Stow Directory)
	-t / --target (Target Directory)

	Opciones de Simulación y Verbosidad
	-n / --no / --simulate (Dry Run)
	-v / --verbose (Verbosidad)

	Opciones Avanzadas
	--ignore (Ignorar Archivos)
	--defer (Diferir)
	--override (Sobrescribir)
	--dotfiles (Modo Dotfiles)
	--no-folding (Sin Tree Folding)
	--adopt (Adoptar Archivos)

	Combinando Operaciones

	Estructura de Directorios
	Estructura Recomendada para Dotfiles
	Principios de Organización
	Un Directorio = Un Paquete
	Replicar Estructura del HOME
	Agrupar Lógicamente

	Ejemplos de Estructuras
	Estructura Simple
	Estructura Compleja

	Instalación de Paquetes
	Proceso de Instalación
	Tree Folding (Plegado de Árbol)
	Tree Unfolding (Desplegado de Árbol)

	Instalación Básica
	Instalación con Verificación
	Instalación Selectiva

	Desinstalación de Paquetes
	Proceso de Desinstalación
	Eliminación de Symlinks
	Eliminación de Directorios Vacíos
	Tree Refolding (Re-plegado)

	Desinstalación Básica
	Desinstalación con Verificación
	Desinstalación Parcial

	Reinstalación de Paquetes
	Comando Restow
	Cuándo Usar Restow
	Restow vs Delete + Stow

	Gestión de Dotfiles
	Setup Inicial
	Crear Estructura
	Mover Configuraciones Existentes
	Usar --adopt (Con Precaución)

	Workflow Diario
	Editar Configuraciones
	Agregar Nueva Aplicación
	Sincronizar con Git

	Manejo de Archivos Sensibles
	Estrategia 1: .gitignore
	Estrategia 2: Archivos Template
	Estrategia 3: Encriptación

	Estructura para Múltiples Hosts

	Ignore Lists
	Tipos de Ignore Lists
	Built-in (Predeterminado)
	Global Ignore List
	Package-Local Ignore List

	Sintaxis de Ignore Lists
	Reglas de Matching
	Ejemplos Prácticos

	Precedencia de Ignore Lists
	Opción --ignore en CLI

	Opciones Avanzadas
	Tree Folding Control
	--no-folding

	Adopt Mode
	--adopt

	Defer y Override
	--defer
	--override

	Dotfiles Mode
	--dotfiles

	Multiple Stow Directories

	Integración con Git
	Estructura de Repositorio
	.gitignore Completo
	Commits Best Practices
	Branches Strategy
	Tags para Versiones
	Submodules para Plugins
	GitHub Actions para Validación

	Troubleshooting
	Problema 1: Conflictos al Stow
	Problema 2: Symlinks Rotos
	Problema 3: Directorio No Vacío
	Problema 4: Tree Folding Inesperado
	Problema 5: Permiso Denegado
	Problema 6: Stow No Encuentra Paquete
	Problema 7: .stowrc No Se Aplica
	Problema 8: Stow Muy Lento

	Scripts de Automatización
	Script 1: install.sh Completo
	Script 2: update.sh
	Script 3: check.sh
	Script 4: clean.sh

	Casos de Uso Prácticos
	Caso 1: Crear Dotfiles desde Cero (Primera Vez)
	Paso 1: Preparación
	Paso 2: Crear Estructura de Paquetes
	Paso 3: Migrar Configuraciones Existentes
	Paso 4: Crear Ignore Lists
	Paso 5: Crear .gitignore
	Paso 6: Crear .stowrc
	Paso 7: Instalar con Stow (Primera Vez)
	Paso 8: Verificar que Todo Funciona
	Paso 9: Crear Scripts de Ayuda
	Paso 10: Crear Repositorio en GitHub
	Paso 11: Crear README.md

	Caso 2: Replicar Dotfiles en Laptop Nueva
	Paso 1: Preparar Nueva Máquina
	Paso 2: Backup de Configs Existentes (Precaución)
	Paso 3: Clonar Repositorio
	Paso 4: Revisar y Ajustar (Si Necesario)
	Paso 5: Instalar Dependencias
	Paso 6: Dry Run (Simulación)
	Paso 7: Resolver Conflictos (Si Existen)
	Paso 8: Instalar Todo
	Paso 9: Verificar Instalación
	Paso 10: Configurar Shell
	Paso 11: Instalar Dependencias Específicas
	Paso 12: Probar Todo
	Paso 13: Ajustes Finales

	Caso 3: Actualizar Configs y Sincronizar
	Paso 1: Identificar Cambios
	Paso 2: Probar Cambios Localmente
	Paso 3: Commit Cambios
	Paso 4: Push a GitHub
	Paso 5: Actualizar Otras Máquinas
	Paso 6: Manejar Conflictos (Si Existen)

	Caso 4: Agregar Nueva Aplicación (Kate Editor)
	Paso 1: Usar Kate y Configurar
	Paso 2: Localizar Archivos de Config
	Paso 3: Crear Paquete Kate
	Paso 4: Crear Ignore List para Kate
	Paso 5: Test Stow (Dry Run)
	Paso 6: Hacer Backup y Eliminar Original
	Paso 7: Stow Kate
	Paso 8: Versionar con Git
	Paso 9: Actualizar README
	Paso 10: Actualizar Script de Instalación

	Caso 5: Migrar de Kubuntu a Archcraft
	Paso 1: Evaluar Diferencias
	Paso 2: En Archcraft Nueva
	Paso 3: Crear Branch para Archcraft
	Paso 4: Instalar Paquetes Universales
	Paso 5: Adaptar o Crear Nuevos Paquetes
	Paso 6: No Instalar Paquetes Incompatibles
	Paso 7: Commit Cambios
	Paso 8: Estrategia de Branches
	Paso 9: Script de Instalación por Distro
	Paso 10: Mantener Ambos Sistemas

	Caso 6: Probar Nueva Configuración Sin Romper
	Paso 1: Crear Branch Experimental
	Paso 2: Crear Paquete Alternativo
	Paso 3: Desinstalar Neovim Actual
	Paso 4: Instalar Nueva Config
	Paso 5: Probar
	Paso 6: Decidir Qué Hacer

	Caso 7: Sincronizar Múltiples Máquinas en Tiempo Real
	Configuración Inicial (Una Vez)
	Workflow Diario
	Automatizar con Cron (Opcional)
	Manejar Conflictos Automáticamente
	Usar Git Hooks (Avanzado)

	Caso 8: Compartir Dotfiles con Equipo/Lab
	Paso 1: Crear Repo de Equipo
	Paso 2: Estructura Multi-Usuario
	Paso 3: Setup Común
	Paso 4: Configs Personales
	Paso 5: Script de Instalación
	Paso 6: Cada Usuario Instala
	Paso 7: Actualizar Configs Compartidas
	Paso 8: Usuarios Agregan Sus Configs

	Caso 9: Migrar de Sistema Manual a Stow
	Estado Inicial
	Paso 1: Backup Completo
	Paso 2: Crear Nueva Estructura
	Paso 3: Reorganizar Archivos
	Paso 4: Verificar Nueva Estructura
	Paso 5: Eliminar Symlinks/Archivos Viejos de HOME
	Paso 6: Instalar con Stow
	Paso 7: Commit Nueva Estructura
	Paso 8: Actualizar README
	Paso 9: Crear Scripts
	Paso 10: Limpiar Historial de Git (Opcional)

	Caso 10: Setup para Desarrollo Multi-Proyecto
	Estructura de Dotfiles
	Paso 1: Crear Estructura
	Paso 2: Configs Comunes
	Paso 3: Configs Específicas por Proyecto
	Paso 4: Scripts de Activación
	Paso 5: Uso
	Paso 6: Automatizar con Direnv (Avanzado)

	Mi Repositorio .dotfiles
	Mi Estructura Actual
	Implementación de Stow
	Script install.sh
	Script para Desinstalar
	Reorganizar Paquetes Problemáticos
	.stowrc
	.stow-local-ignore por Paquete
	Script de Verificación
	Actualizar .gitignore
	Comandos Útiles

	Workflows
	Workflow 1: Configuración Inicial
	Workflow 2: Día a Día
	Workflow 3: Nueva Máquina
	Workflow 4: Experimentar
	Workflow 5: Actualización Limpia

	Best Practices
	Organización de Paquetes
	Uso de Ignore Lists
	Commits y Mensajes
	Testing Antes de Commit
	Backup Siempre
	Documentación
	Estructura Consistente
	Versionado

	Alternativas a Stow
	Yadm (Yet Another Dotfiles Manager)
	Chezmoi
	Dotbot
	Bare Git Repository
	Comparación

	Conclusión
	Comandos Esenciales
	Recursos Adicionales

	Publicaciones Similares

