Gestiona dotfiles facilmente con GNU Stow

Edison Achalma

Escuela Profesional de Economia, Universidad Nacional de San Cristébal de Huamanga

Resumen

This tutorial provides a step-by-step guide to managing dotfiles using GNU
Stow, a tool that leverages symbolic links to centralize and synchronize con-
figuration files across Unix-like systems (Linux, macOS, WSL). It explains
the importance of dotfiles, such as .bashrc and .gitconfig, in customizing
user environments and highlights the inefficiencies of manual management.
The guide details installing GNU Stow, creating a dotfiles repository, lin-
king configurations, and automating the process with a bash script. Advan-
ced tips include handling conflicts, platform-specific setups, and alternatives
like Chezmoi and YADM. This resource is designed for developers seeking
efficient, portable configuration management.

Palabras Claves: Dotfiles, GNU Stow, Symbolic links, Configuration ma-
nagement, Git integration

Tabla de contenidos

Introduction 8
1 Instalacion 10
L1 Linux o e e e e e e e e 10

1.2 macOS e e 10

1.3 DesdeFuente 10

1.4 VerificarInstalacién o 11

2 Conceptos Fundamentales 11
2.1 TerminologiaClave e 11
2.1.1 Package (Paquete) 11

2.1.2 Target Directory (Directorio Objetivo) 11

2.1.3 Stow Directory (Directorio Stow) 12

2.1.4 Installation Image (Imagen de Instalacién) 12

2.1.5 Symlink (Enlace Simbdlico) 12

Edison Achalma @ https://orcid.org/0000-0001-6996-3364

El autor no tiene conflictos de interés que revelar. Los roles de autor se clasificaron utilizando la taxonomia de
roles de colaborador (CRediT; https://credit.niso.org/) de la siguiente manera: Edison Achalma: conceptualizacion,
redaccién

La correspondencia relativa a este articulo debe dirigirse a Edison Achalma, Email: el-
mer.achalma.09 @unsch.edu.pe

https://orcid.org/0000-0001-6996-3364
mailto:elmer.achalma.09@unsch.edu.pe
mailto:elmer.achalma.09@unsch.edu.pe

GESTION DE DOTFILES CON GNU STOW

2.2 Jerarquiade Directorioso

Sintaxis y Comandos

3.1 Sintaxis Bdsica
3.2 Acciones Principales
3.2.1 Stow (Instalar)
3.2.2 Delete (Desinstalar)
3.2.3 Restow (Reinstalar)
3.3 Opcionesde Directorio Lo
3.3.1 -d/--dir (Stow Directory)
332 -t/--target (Target Directory)
3.4 Opciones de Simulaciény Verbosidad
341 -n/--no/--simulate(DryRun)
342 -v/--verbose (Verbosidad)
3.5 Opciones Avanzadas
3.5.1 --ignore (Ignorar Archivos)
352 -—=defer (Diferir)
3.5.3 -—-override (Sobrescribir) o
354 --dotfiles (Modo Dotfiles)
3.5.5 --no-folding (Sin Tree Folding)
3.5.6 --adopt (Adoptar Archivos) Lo oL
3.6 Combinando Operaciones o vt i i i

Estructura de Directorios

4.1 Estructura Recomendada para Dotfiles
4.2 Principios de Organizaciono
4.2.1 UnDirectorio=UnPaquete
4.2.2 Replicar Estructuradel HOME
423 Agrupar Légicamente
4.3 Ejemplos de Estructuras L
43.1 EstructuraSimple
43.2 EstructuraCompleja Lo

Instalacion de Paquetes

5.1 ProcesodelInstalacion
5.1.1 Tree Folding (Plegadode Arbol)
5.1.2 Tree Unfolding (Desplegadode Arbol)
5.2 Instalacion Basica
5.3 Instalacidén con Verificacién e
5.4 Instalacion Selectiva e

Desinstalacion de Paquetes

6.1 Procesode Desinstalacion e
6.1.1 Eliminaciénde Symlinks
6.1.2 Eliminacion de Directorios Vacios
6.1.3 Tree Refolding (Re-plegado)
6.2 Desinstalacion Basica e
6.3 Desinstalacion con Verificacion o

6.4 Desinstalacion Parcial

12

13
13
13
13
13
13
14
14
14
14
14
15
15
15
15
15
15
16
16
16

16
16
17
17
17
18
18
18
19

20
20
20
21
21
22
22

GESTION DE DOTFILES CON GNU STOW

7

10

11

Reinstalacion de Paquetes

7.1 ComandoRestow
7.2 Cuéndo UsarRestow
7.3 Restow vs Delete + Stow Lo o
Gestion de Dotfiles
81 Setuplnicial L
8.1.1 CrearEstructura 0.
8.1.2 Mover Configuraciones Existentes
8.1.3 Usar -—adopt (Con Precaucién)
8.2 Workflow Diario
8.2.1 Editar Configuraciones
8.2.2 Agregar Nueva Aplicacién
8.2.3 Sincronizarcon Gito oo
8.3 Manejo de Archivos Sensibles L Lo oo
8.3.1 [Estrategia 1: .gitignoreo
8.3.2 Estrategia 2: Archivos Template
8.3.3 Estrategia 3: Encriptacién oL
8.4 Estructura para MultiplesHosts

Ignore Lists

9.1 Tiposdelgnore Lists
9.1.1 Built-in (Predeterminado)
9.1.2 GlobalIgnore List
9.1.3 Package-Local Ignore List
9.2 Sintaxisde Ignore Lists
9.2.1 ReglasdeMatching
9.2.2 Ejemplos Practicos
9.3 PrecedenciadeIgnore Lists
94 Opcion ——ignoreenCLI. oo
Opciones Avanzadas
10.1 Tree Folding Control
10.1.1 --—no-folding
10.2 AdoptMode e e
10.2.1 ——adopt e
10.3 Defery Override e
10.3.1 --defer e
10.3.2 —-override
104 DotfilesMode e e
10.4.1 --dotfiles i i i e
10.5 Multiple Stow Directories
Integracion con Git
11.1 Estructurade Repositorio
11.2 .gitignore Completo
11.3 Commits Best Practices
11.4 Branches Strategy e e e e

11.5 Tagspara Versiones oo v v i v ittt

24
24
24
24

25
25
25
25
26
26
26
26
27
27
27
27
28
28

29
29
29
29
30
30
30
31
31
31

32
32
32
32
32
33
33
33
34
34
34

GESTION DE DOTFILES CON GNU STOW

11.6 Submodules paraPlugins L Lo
11.7 GitHub Actions para Validacién

12 Troubleshooting

12.1 Problema 1: Conflictosal Stow
12.2 Problema 2: Symlinks Rotos L.
12.3 Problema 3: DirectorioNoVacio
12.4 Problema 4: Tree Folding Inesperado
12.5 Problema 5: Permiso Denegado
12.6 Problema 6: Stow No Encuentra Paquete
12.7 Problema 7: .stowrc NoSe Aplica
12.8 Problema 8: Stow Muy Lento

13 Scripts de Automatizacion

13.1 Script 1: install.sh Completo L.
13.2 Script2:update.sho
13.3 Script3:check.sh
13.4 Script4:clean.sh

14 Casos de Uso Practicos

14.1 Caso 1: Crear Dotfiles desde Cero (Primera Vez)
14.1.1 Paso l:Preparacién
14.1.2 Paso 2: Crear Estructurade Paquetes
14.1.3 Paso 3: Migrar Configuraciones Existentes
14.1.4 Paso4:CrearlIgnore Lists
14.1.5 Paso 5: Crear .gitignore o v v v v vt e
14.1.6 Paso 6: Crear .StOWIC vt v v v i it st e
14.1.7 Paso 7: Instalar con Stow (Primera Vez)
14.1.8 Paso 8: Verificar que Todo Funciona
14.1.9 Paso9: Crear Scriptsde Ayuda
14.1.10 Paso 10: Crear Repositorioen GitHub
14.1.11 Paso 11: Crear README.md

14.2 Caso 2: Replicar Dotfiles en LaptopNueva
14.2.1 Paso 1: Preparar NuevaMaquina
14.2.2 Paso 2: Backup de Configs Existentes (Precaucién)
14.2.3 Paso 3: Clonar Repositorio
14.2.4 Paso 4: Revisar y Ajustar (Si Necesario)
14.2.5 Paso 5: Instalar Dependencias
14.2.6 Paso 6: Dry Run (Simulacién)
14.2.7 Paso 7: Resolver Conflictos (Si Existen)
14.2.8 Paso8:Instalar Todo
14.2.9 Paso 9: Verificar Instalacién oo
14.2.10 Paso 10: Configurar Shell
14.2.11 Paso 11: Instalar Dependencias Especificas
142.12Paso 12: Probar Todo
14.2.13 Paso 13: Ajustes Finales

14.3 Caso 3: Actualizar Configs y Sincronizar
14.3.1 Paso 1: Identificar Cambios
14.3.2 Paso 2: Probar Cambios Localmente

38
38

39
39
40
40
41
41
42
42
43

GESTION DE DOTFILES CON GNU STOW 5

14.3.3 Paso 3: Commit Cambios, 66
14.3.4 Paso4:PushaGitHub oL, 67
14.3.5 Paso 5: Actualizar Otras Maquinas 67
14.3.6 Paso 6: Manejar Conflictos (Si Existen) 67
14.4 Caso 4: Agregar Nueva Aplicacion (Kate Editor) 68
14.4.1 Paso 1: Usar Kate y Configurar 68
14.4.2 Paso 2: Localizar Archivosde Config 68
14.4.3 Paso 3: Crear Paquete Kate 69
14.4.4 Paso 4: Crear Ignore ListparaKate 69
14.4.5 Paso5: Test Stow (DryRun) 70
14.4.6 Paso 6: Hacer Backup y Eliminar Original 70
14477 Paso7:Stow Kate 70
14.4.8 Paso 8: Versionarcon Git., 70
14.4.9 Paso 9: Actualizar README 71
14.4.10 Paso 10: Actualizar Script de Instalacion 71
14.5 Caso 5: Migrar de Kubuntu a Archeraft 72
14.5.1 Paso 1: Evaluar Diferencias 72
14.5.2 Paso 2: En Archcraft Nueva 72
14.5.3 Paso 3: Crear Branch para Archeraft 72
14.5.4 Paso 4: Instalar Paquetes Universales 72
14.5.5 Paso 5: Adaptar o Crear Nuevos Paquetes 73
14.5.6 Paso 6: No Instalar Paquetes Incompatibles 74
14.5.77 Paso7: Commit Cambios 74
14.5.8 Paso 8: Estrategiade Branches 74
14.5.9 Paso 9: Script de Instalaciéon por Distro 75
14.5.10 Paso 10: Mantener Ambos Sistemas 76
14.6 Caso 6: Probar Nueva Configuraciéon Sin Romper 76
14.6.1 Paso 1: Crear Branch Experimental 76
14.6.2 Paso 2: Crear Paquete Alternativo 76
14.6.3 Paso 3: Desinstalar Neovim Actual 77
14.6.4 Paso 4: Instalar Nueva Config 77
14.6.5 PasoS5:Probar 77
14.6.6 Paso 6: DecidirQué Hacer 77
14.7 Caso 7: Sincronizar Multiples Mdquinas en TiempoReal 78
14.7.1 Configuracién Inicial (Una Vez) 79
1472 Workflow Diario 79
14.7.3 Automatizar con Cron (Opcional) 80
14.7.4 Manejar Conflictos Automdticamente 80
14.7.5 Usar Git Hooks (Avanzado) 80
14.8 Caso 8: Compartir Dotfiles con Equipo/Lab 81
14.8.1 Paso 1: Crear Repode Equipo 81
14.8.2 Paso 2: Estructura Multi-Usuario 81
14.8.3 Paso3:SetupComun 81
14.8.4 Paso 4: Configs Personales 82
14.8.5 Paso 5: Scriptde Instalaciéon 83
14.8.6 Paso 6: Cada UsuarioInstala 83
14.8.7 Paso 7: Actualizar Configs Compartidas 84
14.8.8 Paso 8: Usuarios Agregan Sus Configs 84

GESTION DE DOTFILES CON GNU STOW

14.9

Caso 9: Migrar de Sistema Manual aStow
149.1 EstadoInicial
14.9.2 Paso 1: BackupCompleto
14.9.3 Paso 2: Crear Nueva Estructura
14.9.4 Paso 3: Reorganizar Archivos o oo,
14.9.5 Paso 4: Verificar Nueva Estructura
14.9.6 Paso 5: Eliminar Symlinks/Archivos Viejosde HOME
14.9.7 Paso 6: Instalarcon Stow L.
14.9.8 Paso 7: Commit Nueva Estructura
14.9.9 Paso 8: Actualizar README,
14.9.10Paso 9: Crear Scriptso
14.9.11 Paso 10: Limpiar Historial de Git (Opcional)

14.10Caso 10: Setup para Desarrollo Multi-Proyecto

14.10.1 Estructurade Dotfiles
14.10.2 Paso 1: Crear Estructura
14.10.3 Paso 2: Configs Comunes
14.10.4 Paso 3: Configs Especificas por Proyecto
14.10.5 Paso 4: Scripts de Activacion
14.10.6 Paso 5: Uso e e
14.10.7 Paso 6: Automatizar con Direnv (Avanzado)

15 Mi Repositorio .dotfiles

15.1
15.2

Mi Estructura Actualo Lo
Implementacionde Stow Lo
15.2.1 Scriptinstall.sh
15.2.2 Script para Desinstalar,
15.2.3 Reorganizar Paquetes Problemdticos
1524 SOWIC o L o e e e
15.2.5 .stow-local-ignore por Paquete
15.2.6 Scriptde Verificacién L
15.2.7 Actualizar .gitignore
152.8 Comandos Utiles

16 Workflows

16.1
16.2
16.3
16.4
16.5

Workflow 1: Configuracién Inicial
Workflow 2: DiaaDia
Workflow 3: NuevaMaquina,
Workflow 4: Experimentar
Workflow 5: Actualizaciéon Limpia

17 Best Practices

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8

Organizaciéon de Paquetes
Usodelgnore Lists
Commits y Mensajes
Testing Antesde Commit
Backup Siempre L
Documentacidn
Estructura Consistente Lo e
Versionado oL

84
84
85
85
85
86
86
86
87
87
88
89
89
89
90
90
90
92
93
93

93
93
94
94
97
97
98
98
99
100
100

101
101
102
102
103
103

GESTION DE DOTFILES CON GNU STOW

18 Alternativas a Stow

18.1 Yadm (Yet Another Dotfiles Manager)

18.2 Chezmoi
18.3 Dotbot
18.4 Bare Git Repository .
18.5 Comparaciéon

19 Conclusion
19.1 Comandos Esenciales
19.2 Recursos Adicionales

20 Publicaciones Similares

107
107
107
108
108
108

109
109
110

110

GESTION DE DOTFILES CON GNU STOW 8

Gestiona dotfiles facilmente con GNU Stow

(Alguna vez has perdido horas configurando tu terminal o editor tras cambiar de compu-
tadora? Los dotfiles, esos archivos ocultos como .bashrc o .gitconfig, guardan tus perso-
nalizaciones, pero gestionarlos a mano es un caos. GNU Stow simplifica todo: organiza tus
configuraciones en un repositorio central y usa enlaces simbdlicos para sincronizarlas en mi-
nutos.

Qué es Dotfiles?

Los dotfiles son archivos ocultos en sistemas Unix (Linux, macOS) que empiezan con un
punto (ej., .zshrc, .gitconfig, .config/nvim). Almacenan configuraciones personalizadas
para tu terminal, editor de cédigo o gestor de ventanas. Por ejemplo, .bashrc define alias y
variables de entorno, mientras que .vimrc ajusta tu editor Vim. Estos archivos son el corazén
de tu flujo de trabajo, ya que personalizan tus herramientas favoritas.

Tener dotfiles bien organizados te ahorra horas al replicar tu entorno en nuevas ma-
quinas. Imagina configurar tu shell o editor desde cero tras reinstalar tu sistema: jes tedioso!
Con una gestion adecuada, puedes clonar tus configuraciones y tener todo listo rdpidamente.
Esto es importante para desarrolladores que trabajan en multiples dispositivos o entornos como
servidores y laptops.

Problemas de la Gestion Manual

Copiar dotfiles manualmente o usar scripts caseros es lento y arriesgado. Puedes sobres-
cribir archivos, olvidar configuraciones o perderlas en una reinstalacién. Por ejemplo, mover
.zshrc a otra miquina sin un sistema organizado puede causar errores si las versiones del soft-
ware difieren. GNU Stow soluciona esto al centralizar tus archivos y crear enlaces simbdlicos
automaticamente, manteniendo todo sincronizado.

{Qué es GNU Stow?

GNU Stow es un gestor de granjas de enlaces simbélicos (symlink farm manager) que
permite administrar multiples paquetes de software o conjuntos de archivos de configuracién de
manera organizada. Concepto principal:

Instalar cada paquete en su propio arbol de directorios
{

Usar enlaces simbdlicos para que aparezcan en un arbol comin
{

Administrar facilmente cada paquete de forma independiente

Problema original:

En /usr/local/man/manl tenias:

a2p.1 # ;De qué paquete es?
perl.1 # ;Perl?

emacs.1 # ,Emacs?

etags.1 # ,Emacs también?

Al desinstalar Perl... ;qué archivos eliminar?

Solucion con Stow:

GESTION DE DOTFILES CON GNU STOW 9

Cada paquete en su propio arbol:
/usr/local/stow/perl/
bin/
perl
a2p
man/
manl/
perl.1
azp.1

/usr/local/stow/emacs/
bin/
emacs
man/
mani/
emacs.1

Stow crea symlinks en /usr/local/ que apuntan a los paquetes

Gestion de Dotfiles

Aunque Stow fue disefiado para software, hoy en dia su uso principal es gestionar dot-
files:

Ventajas:

* Mantener dotfiles organizados por aplicacién

* Sincronizar con Git

* Instalar/desinstalar configuraciones selectivamente
* Mantener backups sin perder estructura

* Compartir configuraciones entre miquinas

* Control de versiones granular

Comparacion: Antes vs Después de Stow
Sin Stow:

~/.config/
nvim/
kitty/
zsh/

Problemas:

- Dificil hacer backup selectivo

- No hay organizacidn por paquete

- Complicado compartir entre maquinas
- Sin control de versiones granular

Con Stow:

GESTION DE DOTFILES CON GNU STOW

~/dotfiles/ # Stow directory
nvim/ # Package
.config/
nvim/
kitty/ # Package
.config/
kitty/
zsh/ # Package
.zshrc
.zshenv
Ventajas:

- Cada aplicacidén es un "paquete"

- Facil stow/unstow selectivo

- Git maneja cada paquete independientemente
- Estructura clara y mantenible

1 Instalacion
1.1 Linux
Ubuntu/Debian:

sudo apt update
sudo apt install stow

Arch Linux:
sudo pacman -S stow
Fedora/RHEL:

sudo dnf install stow

openSUSE:

sudo zypper install stow

1.2 macOS

Con Homebrew
brew install stow

0 con MacPorts
sudo port install stow

1.3 Desde Fuente

10

GESTION DE DOTFILES CON GNU STOW 11

Descargar ultima versidn

wget https://ftp.gnu.org/gnu/stow/stow-latest.tar.gz
tar -xzf stow-latest.tar.gz

cd stow-2.4.1

Compilar e instalar
./configure

make

sudo make install

1.4 Verificar Instalacion

Verificar versiém
stow ——-version
GNU Stow version 2.4.1

Ver ayuda
stow —-help

2 Conceptos Fundamentales
2.1 Terminologia Clave
2.1.1 Package (Paquete)

Una coleccidn relacionada de archivos y directorios que administras como una unidad.

Ejemplo: paquete '"nvim"
nvim/
.config/
nvim/
init.lua
lua/
.local/
share/
nvim/

2.1.2 Target Directory (Directorio Objetivo)

El directorio raiz donde quieres que aparezcan instalados tus paquetes.

Para dotfiles, usualmente es:
Target: ~/ (tu HOME)

Para software del sistema:
Target: /usr/local

GESTION DE DOTFILES CON GNU STOW 12

2.1.3 Stow Directory (Directorio Stow)

El directorio raiz que contiene todos tus paquetes en subdirectorios separados.

Para dotfiles:
Stow dir: ~/dotfiles/

Para software:
Stow dir: /usr/local/stow/

2.1.4 Installation Image (Imagen de Instalacion)

La estructura de archivos y directorios requerida por un paquete, relativa al target direc-
tory.

E1 paquete "zsh" tiene esta imagen:

zsh/
.zshrc # - ~/.zshrc
.zshenv # -+ ~/.zshenv
.config/

zsh/ # + ~/.config/zsh/
aliases.zsh

2.1.5 Symlink (Enlace Simbélico)

Un archivo especial que apunta a otro archivo o directorio.

Ejemplo:
~/.zshrc -> ~/dotfiles/zsh/.zshrc
T
symlink

Tipos de symlinks:

¢ Absoluto: /home/user/dotfiles/zsh/.zshrc
¢ Relativo: . ./dotfiles/zsh/.zshrc

Nota: Stow solo crea symlinks relativos dentro del target directory.

2.2 Jerarquia de Directorios

/home/user/ (target directory)

.zshrc

.config/
nvim/ symlinks
kitty/

GESTION DE DOTFILES CON GNU STOW

/home/user/dotfiles/ (stow dir)

zsh/ (package)
.zshrc
nvim/ (package)
.config/
nvim/
kitty/ (package)
.config/
kitty/

3 Sintaxis y Comandos

3.1 Sintaxis Basica

stow [opciones] [flags de accidn] paquetel paquete2 ...

3.2 Acciones Principales

3.2.1 Stow (Instalar)

Instalar un paquete
stow nombre-paquete

Instalar maltiples paquetes
stow nvim zsh kitty

Flag explicito (opcional)

stow -S nvim
stow ——stow nvim

3.2.2 Delete (Desinstalar)

Desinstalar un paquete
stow -D nvim
stow —--delete nvim

Desinstalar maltiples
stow -D nvim zsh kitty

3.2.3 Restow (Reinstalar)

GESTION DE DOTFILES CON GNU STOW

Unstow + Stow en una operacién
stow -R nvim
stow —-restow nvim

Util después de actualizar paquete

3.3 Opciones de Directorio

3.3.1 -d/--dir (Stow Directory)

Especificar stow directory
stow -d ~/mis-dotfiles -t ~ nvim

Default: directorio actual

3.3.2 -t/ --target (Target Directory)

Especificar target directory
stow -t /usr/local perl

Default: padre del stow directory

Ejemplo completo:

Estructura:

/opt/
myapps/ # stow directory
myapp/ # package
bin/
Helel2
Comando:

cd /opt/myapps
stow -t /usr/local myapp

Resultado:

/usr/local/bin/myapp -> ../opt/myapps/myapp/bin/myapp

3.4 Opciones de Simulacién y Verbosidad

3.4.1 -n/--no/--simulate (Dry Run)

Mostrar qué haria sin hacer cambios
stow -n nvim
stow —--simulate nvim

Combinado con verbose
stow —nv nvim

14

GESTION DE DOTFILES CON GNU STOW

3.4.2 -v/--verbose (Verbosidad)

Niveles de verbosidad: 0-5

stow -v nvim # verbose level 1
stow -vv nvim # verbose level 2
stow —--verbose=5 nvim # verbose level 5

Nivel O0: silencioso (default)
Nivel 1-2: operaciones principales
Nivel 3-5: debug detallado

Ejemplo:

$ stow -nv zsh
WARNING! stowing zsh would cause conflicts:

* existing target is neither a link nor a directory:

All operations aborted.

3.5 Opciones Avanzadas

3.5.1 --ignore (Ignorar Archivos)

Ignorar archivos que coincidan con regexp
stow —-ignore='.*\.orig' --ignore='.x\.dist' nvim

Multiples patrones
stow —-ignore='README.*' --ignore='.*~' nvim

3.5.2 --defer (Diferir)

No sobrescribir si ya existe desde otro paquete
stow —--defer=man --defer=info perl

3.5.3 --override (Sobrescribir)

Forzar sobrescribir symlinks existentes
stow --override=man --override=info perl

3.5.4 --dotfiles (Modo Dotfiles)

Transforma "dot-" en "."
dot-bashrc -+ .bashrc
stow —--dotfiles bash

Ejemplo de paquete:
bash/
dot-bashrc # Se convierte en ~/.bashrc

.zshrc

15

GESTION DE DOTFILES CON GNU STOW

3.5.5 --no-folding (Sin Tree Folding)

Desactivar tree folding
stow --no-folding nvim

Crea directorios en lugar de symlinks a directorios

3.5.6 --adopt (Adoptar Archivos)

CUIDADO: Modifica el stow directory
Mueve archivos del target al package

stow ——-adopt nvim

Si ~/.config/nvim/init.lua existe:
Lo mueve a ~/dotfiles/nvim/.config/nvim/init.lua
Luego crea el symlink

3.6 Combinando Operaciones

Mezclar multiples acciones
stow -D old-nvim -S new-nvim

Orden de ejecucidn:
1. Unstow old-nvim
2. Stow new—nvim

Multiples paquetes, maltiples acciones
stow -5 pkgl pkg2 -D pkg3 pkgd -S pkgb -R pkgb
Resultado: unstow pkg3,4,6 -+ stow pkgl,2,5,6
4 Estructura de Directorios

4.1 Estructura Recomendada para Dotfiles

~/dotfiles/ # Stow directory
git/ # Package
.gitconfig
zsh/ # Package
.zshrc
.zshenv
.config/
zsh/

aliases.zsh
functions.zsh
nvim/ # Package

GESTION DE DOTFILES CON GNU STOW 17

.config/
nvim/
init.lua
lua/
plugins/
config/
kitty/ # Package
.config/
kitty/
kitty.conf
themes/
tmux/ # Package
.tmux.conf
.config/
tmux/
kde/ # Package
.config/
kdeglobals
dolphinrc
kwinrc

4.2 Principios de Organizacion

4.2.1 Un Directorio = Un Paquete

Bien: un paquete por aplicacién
nvim/
.config/
nvim/

Mal: miltiples aplicaciones en un paquete
editors/
.config/
nvim/
vim/
.vimrc

4.2.2 Replicar Estructura del HOME

E1 contenido del paquete debe replicar la estructura de ~/

Ejemplo: archivo en ~/.config/kitty/kitty.conf
Paquete debe ser:
kitty/
.config/ # replica la estructura
kitty/
kitty.conf

GESTION DE DOTFILES CON GNU STOW

NO:
kitty/
kitty.conf # falta .config/

4.2.3 Agrupar Logicamente

Opcidén 1: Por aplicacién
~/dotfiles/

nvim/

vim/

emacs/

Opcidn 2: Por categoria (menos comin)
~/dotfiles/
editors/
.vimrc
.config/nvim/
shells/
.zshrc
.bashrc

Recomendado: Opcidén 1 (por aplicacidn)

4.3 Ejemplos de Estructuras
4.3.1 Estructura Simple

~/dotfiles/
bash/
.bashrc
git/
.gitconfig
vim/
.vimrc

Instalacion:

mkdir ~/dotfiles
cd ~/dotfiles

Crear la estructura para bash
mkdir -p bash

o mueve, o crea symlink, como prefieras
cp ~/.bashrc bash/.bashrc
(opcional) cp ~/.bash_profile bash/.bash profile

GESTION DE DOTFILES CON GNU STOW

Para git
mkdir git
cp ~/.gitconfig git/.gitconfig

Para vim

mkdir vim

cp ~/.vimrc vim/.vimrc

si tienes ~/.vim/ con plugins, etc - también lo copias/mueves

Para zsh + oh-my-zsh customizaciones
mkdir -p zsh/.config
cp ~/.zshrc zsh/.zshrc

Una vez que tengas (por ejemplo) la carpeta bash/ con .bashrc dentro:
cd ~/dotfiles

Instalar un paquete

stow bash # - crea symlink ~/.bashrc -+ ~/dotfiles/bash/.bashrc
stow git

stow vim

Instalar maltiples paquetes
stow bash git vim nvim kitty zsh

Resultado:

~/ .bashrc —-> dotfiles/bash/.bashrc
~/.gitconfig -> dotfiles/git/.gitconfig
~/.vimrc -> dotfiles/vim/.vimrc

4.3.2 Estructura Compleja

~/dotfiles/
shell/
.bashrc
.zshrc
.config/
bash/
aliases.bash
zsh/
aliases.zsh
terminal/
.config/
kitty/
kitty.conf
themes/

19

GESTION DE DOTFILES CON GNU STOW

alacritty/

alacritty.yml
editor/
.config/

nvim/
init.lua
lua/

plugins.lua

5 Instalacion de Paquetes
5.1 Proceso de Instalacion

5.1.1 Tree Folding (Plegado de Arbol)

Stow intenta crear el minimo niimero de symlinks posible.

Ejemplo 1: Target Vacio

Estado inicial:
~/ (vacio, sin ~/.config/)

Paquete:
~/dotfiles/nvim/
.config/
nvim/
init.lua

Comando:
cd ~/dotfiles
stow nvim

Resultado (tree folding):
~/.config -> dotfiles/nvim/.config/

En lugar de:
~/.config/nvim/init.lua -> ...
Stow crea un symlink al directorio completo

Ejemplo 2: Target con Archivos Existentes

Estado inicial:
~/.config/
kitty/ # ya existe
kitty.conf

Paquete:
~/dotfiles/nvim/
.config/

nvim/

20

GESTION DE DOTFILES CON GNU STOW

init.lua

Comando:
stow nvim

Resultado (NO puede hacer tree folding):

~/.config/ # directorio real
kitty/ # ya existia
kitty.conf

nvim -> ../dotfiles/nvim/.config/nvim/

5.1.2 Tree Unfolding (Desplegado de Arbol)

Cuando un symlink plegado debe ser “abierto” para acomodar otro paquete.

Escenario:

Estado inicial:
~/.config -> dotfiles/nvim/.config/

Instalar otro paquete:
~/dotfiles/kitty/
.config/
kitty/
kitty.conf

Comando:
stow kitty

Proceso de unfolding:

1. Eliminar symlink: ~/.config

2. Crear directorio: ~/.config/

3. Crear symlinks:

~/.config/nvim -> ../dotfiles/nvim/.config/nvim/

~/.config/kitty -> ../dotfiles/kitty/.config/kitty/

5.2 Instalacion Basica

Crea el directorio
mkdir ~/dotfiles

Navegar al stow directory
cd ~/dotfiles

Instalar un paquete
stow nvim

Instalar maltiples paquetes

21

GESTION DE DOTFILES CON GNU STOW

stow nvim zsh git kitty

Instalar todos los paquetes
stow */

5.3 Instalacion con Verificacion

Dry run primero (simular)
stow -nv nvim

Si todo 0K, instalar realmente
stow nvim

Verificar symlinks creados
ls -la ~/.config/nvim

5.4 Instalacion Selectiva

Solo paquetes de terminal
stow kitty alacritty tmux

Solo paquetes de shell
stow bash zsh fish

Solo paquetes de editor
stow nvim vim emacs

6 Desinstalacion de Paquetes
6.1 Proceso de Desinstalacion

6.1.1 Eliminacion de Symlinks

Paquete instalado:
~/.zshrc -> dotfiles/zsh/.zshrc

Desinstalar:
cd ~/dotfiles

stow -D zsh

Resultado:
~/.zshrc eliminado (porque era symlink a stow package)

6.1.2 Eliminacion de Directorios Vacios

GESTION DE DOTFILES CON GNU STOW 23

Antes:
~/.config/
nvim -> ../dotfiles/nvim/.config/nvim/

Desinstalar:
stow -D nvim

Después:
~/.config/ eliminado (si quedd vacio)
6.1.3 Tree Refolding (Re-plegado)

Después de eliminar symlinks, si un directorio contiene solo symlinks a un tnico pa-
quete, Stow lo “re-pliega”.
Escenario:

Estado actual:
~/.config/
nvim -> ../dotfiles/nvim/.config/nvim/

kitty -> ../dotfiles/kitty/.config/kitty/

Desinstalar kitty:
stow -D kitty

Resultado (refolding):
~/.config -> dotfiles/nvim/.config/

6.2 Desinstalacion Basica

Navegar al stow directory
cd ~/dotfiles

Desinstalar un paquete
stow -D nvim

Desinstalar miltiples paquetes
stow -D nvim zsh git

Desinstalar todos los paquetes
stow -D */

6.3 Desinstalacion con Verificacion

Dry run primero
stow -Dnv nvim

Si todo OK, desinstalar realmente

GESTION DE DOTFILES CON GNU STOW

stow -D nvim

Verificar que symlinks fueron eliminados
ls -la ~/.config/nvim

6.4 Desinstalacion Parcial

Desinstalar solo configuraciones de terminal
stow -D kitty alacritty tmux

Mantener el resto

7 Reinstalacion de Paquetes

7.1 Comando Restow

Restow = Unstow + Stow
stow -R nvim
stow ——restow nvim

7.2 Cuando Usar Restow

1. Después de actualizar un paquete:

Editaste archivos en ~/dotfiles/nvim/
cd ~/dotfiles
stow -R nvim

Esto actualiza los symlinks si la estructura cambid

2. Para limpiar symlinks obsoletos:

Eliminaste archivos del paquete
stow -R nvim

Restow elimina symlinks huérfanos

3. Después de cambiar estructura:

Moviste archivos dentro del paquete
Antes: nvim/.vimrc
Ahora: nvim/.config/nvim/init.1lua

stow -R nvim

7.3 Restow vs Delete + Stow

24

GESTION DE DOTFILES CON GNU STOW

Método 1: Restow (recomendado)
stow -R nvim

Método 2: Manual (equivalente)
stow -D nvim
stow nvim

Ventaja de -R: mé&s réapido, optimizado

8 Gestion de Dotfiles
8.1 Setup Inicial

8.1.1 Crear Estructura

Crear directorio para dotfiles
mkdir -p ~/dotfiles
cd ~/dotfiles

Inicializar Git
git init

8.1.2 Mover Configuraciones Existentes

Método manual:

Crear paquete
mkdir -p ~/dotfiles/zsh

Mover archivos
mv ~/.zshrc ~/dotfiles/zsh/
mv ~/.zshenv ~/dotfiles/zsh/

Stow
cd ~/dotfiles
stow zsh

Con script:

#!/bin/bash
migrate-to-stow.sh

DOTFILES="$HOME/dotfiles"
mkdir -p "$DOTFILES"

Migrar zsh
mkdir -p "$DOTFILES/zsh"
mv ~/.zshrc "$DOTFILES/zsh/"

25

GESTION DE DOTFILES CON GNU STOW

mv ~/.zshenv "$DOTFILES/zsh/"

Migrar nvim
mkdir -p "$DOTFILES/nvim/.config"
mv ~/.config/nvim "$DOTFILES/nvim/.config/"

Migrar git
mkdir -p "$DOTFILES/git"
mv ~/.gitconfig "$DOTFILES/git/"

Stow todo

cd "$DOTFILES"
stow zsh nvim git

8.1.3 Usar --adopt (Con Precaucion)

Crear estructura primero
mkdir -p ~/dotfiles/nvim/.config
mkdir ~/dotfiles/nvim/.config/nvim

Adoptar configuracidén existente
cd ~/dotfiles

stow ——adopt nvim

Esto MUEVE ~/.config/nvim/* a ~/dotfiles/nvim/.config/nvim/
Y luego crea el symlink

8.2 Workflow Diario

8.2.1 Editar Configuraciones

Los symlinks te permiten editar en cualquier lugar:

Opcidn 1: Editar en home (a través del symlink)
nvim ~/.zshrc # Edita ~/dotfiles/zsh/.zshrc

Opcidén 2: Editar directamente en dotfiles
nvim ~/dotfiles/zsh/.zshrc # Mismo archivo

8.2.2 Agregar Nueva Aplicacion

1. Crear paquete
cd ~/dotfiles
mkdir -p new-app/.config/new-app

2. Agregar archivos

GESTION DE DOTFILES CON GNU STOW

cp -r ~/.config/new-app/* new-app/.config/new-app/

3. Remover originales
rm -rf ~/.config/new-app

4. Stow
stow new-app

5. Commit a Git
git add new-app/
git commit -m "Add new-app configuration"

8.2.3 Sincronizar con Git

cd ~/dotfiles

Después de cambios

git add .

git commit -m "Update nvim configuration"
git push origin main

En otra m&quina
git pull origin main
stow nvim # o stow -R nvim si ya estaba instalado

8.3 Manejo de Archivos Sensibles

8.3.1 Estrategia 1: .gitignore

~/dotfiles/.gitignore
Ignorar archivos sensibles

SSH keys
.ssh/id_x*
.ssh/*.pem

Contraseias
.netrc

.authinfo

Tokens
.config/gh/hosts.yml

8.3.2 [Estrategia 2: Archivos Template

27

GESTION DE DOTFILES CON GNU STOW

Crear template sin datos sensibles
~/dotfiles/git/.gitconfig.local.template
[user]

name = YOUR_NAME

email = YOUR_EMAIL

.gitignore
.gitconfig.local

Script de setup
#!/bin/bash
if [! -f ~/dotfiles/git/.gitconfig.local]; then
cp ~/dotfiles/git/.gitconfig.local.template \
~/dotfiles/git/.gitconfig.local
echo "Edit ~/dotfiles/git/.gitconfig.local"
fi

8.3.3 Estrategia 3: Encriptacion

Usar git-crypt o similar
cd ~/dotfiles
git-crypt init

Especificar qué encriptar

.gitattributes

.netrc filter=git-crypt diff=git-crypt
.ssh/id_x filter=git-crypt diff=git-crypt

8.4 Estructura para Miiltiples Hosts

~/dotfiles/

common/ # Compartido entre todos
git/
tmux/

desktop/ # Solo desktop
kde/
i3/

laptop/ # Solo laptop
power-management/

server/ # Solo servers
ssh/

Script de instalacion por host:

#!/bin/bash
install.sh

28

GESTION DE DOTFILES CON GNU STOW

HOSTNAME=$ (hostname)

Instalar coman
cd ~/dotfiles/common
stow */

Instalar especifico del host
case "$HOSTNAME" in
desktop-main)
cd ~/dotfiles/desktop
stow */
laptop-work)
cd ~/dotfiles/laptop
stow */
server—x*)
cd ~/dotfiles/server
stow */

esac

9 Ignore Lists
9.1 Tipos de Ignore Lists
9.1.1 Built-in (Predeterminado)

Stow ignora automdticamente:

RCS

L,V

CVsS

\.\#.+ # CVS conflict files / emacs lock files
\.cvsignore
\.svn

_darcs

\.hg

\.git
\.gitignore
\.gitmodules

Lt # emacs backup files
\#. x\# # emacs autosave files
~/README . *

~/LICENSE. *

~/COPYING

9.1.2 Global Ignore List

Archivo: ~/.stow-global-ignore

GESTION DE DOTFILES CON GNU STOW

~/.stow-global-ignore

Archivos de respaldo
.*\.bak
.*\.old
.*\.orig

Temporales
.*\ . swp
.*\ . tmp

0S especificos
\.DS_Store
Thumbs\ .db

IDEs
\.idea
\.vscode

Build artifacts
node_modules
__pycache__

*.pyc

9.1.3 Package-Local Ignore List

Archivo: <package>/.stow-local-ignore

~/dotfiles/nvim/.stow-local-ignore

Plugin managers
~/\.config/nvim/plugin/packer_compiled\.lua

Cache
~/\.config/nvim/.*\.cache/

Logs
~/\.config/nvim/.*\.log

Lazy-lock
~/\.config/nvim/lazy-lock\. json
9.2 Sintaxis de Ignore Lists

9.2.1 Reglas de Matching

1. Expresiones con / (path completo):

30

GESTION DE DOTFILES CON GNU STOW 31

Match contra path completo desde raiz del paquete
~/README. * # README en raiz
~/\.config/nvim/cache/ # Directorio cache especifico

2. Expresiones sin / (basename):

Match contra nombre del archivo/directorio
README. * # Cualquier README en cualquier ubicacidn
.*\.log # Archivos .log en cualquier ubicacién

9.2.2 Ejemplos Practicos

Ejemplo 1: Ignorar documentacion:

.stow-local-ignore
~/README . *
~/LICENSE. *
~/CHANGELQG . *
~/docs/

Ejemplo 2: Ignorar archivos temporales:

.stow-local-ignore
.x\ . swp$

.*\.swo$

k~$

\#.x\#$

Ejemplo 3: Ignorar por aplicacion:

nvim/.stow-local-ignore
~/\.config/nvim/plugin/
~/\.config/nvim/.*\.cache/
lazy-lock\. json

zsh/.stow-local-ignore
\ . zcompdump
\.zsh_history

9.3 Precedencia de Ignore Lists

1. .stow-local-ignore (en paquete)
1 (si no existe)

2. ~/.stow-global-ignore
1 (si no existe)

3. Built-in ignore list

9.4 Opciéon --ignore en CLI

GESTION DE DOTFILES CON GNU STOW 32

Ignorar especificos para esta ejecucidn
stow --ignore='.*\.orig' --ignore='.*\.dist' nvim

Equivalente a expresidén OR
stow —-ignore='.*\.orig|.*\.dist' nvim

Combina con ignore lists existentes

10 Opciones Avanzadas
10.1 Tree Folding Control
10.1.1 --no-folding

Desactiva tree folding completamente.
Sin —no-folding (default):

Resultado:
~/.config -> dotfiles/nvim/.config/

Con —no-folding:

Resultado:
~/.config/ # directorio real
nvim -> ../dotfiles/nvim/.config/nvim/

Uso:

stow --no-folding nvim

10.2 Adopt Mode
10.2.1 --adopt

ADVERTENCIA: Modifica el contenido del stow directory.
Escenario:

Tienes configuracidén existente:
~/.config/nvim/init.lua

Quieres adoptarla en tu paquete:
~/dotfiles/nvim/.config/nvim/ (vacio)

Comando:
cd ~/dotfiles
stow —--adopt nvim

Resultado:
1. ~/.config/nvim/init.lua -+ movido a ~/dotfiles/nvim/.config/nvim/init.lua
2. ~/.config/nvim/init.lua + se convierte en symlink

GESTION DE DOTFILES CON GNU STOW

Uso con Git:

1. Adoptar archivos
stow —--adopt nvim

2. Ver diferencias
cd nvim
git diff

3. Decidir qué mantener

git add -p # Afiadir selectivamente

o

git checkout HEAD -- . # Descartar cambios adoptados

10.3 Defer y Override
10.3.1 --defer

Evita stowing si el archivo ya estd stowed por otro paquete.
Escenario:

paquete-a tiene:
paquete-a/
.config/
shared/
config.txt

paquete-b tiene:
paquete-b/
.config/
shared/
config.txt

Instalar A primero:
stow paquete-a # (OK

Instalar B con defer:
stow --defer='.config/shared/config.txt' paquete-b
B no sobrescribird config.txt de A

10.3.2 --override

Fuerza stowing incluso si ya existe symlink de otro paquete.
Escenario:

Mismo escenario de arriba

Instalar B con override:
stow --override='.config/shared/' paquete-b
B sobrescribirad todos los archivos en .config/shared/

33

GESTION DE DOTFILES CON GNU STOW

10.4 Dotfiles Mode
10.4.1 --dotfiles

Transforma dot- en . al hacer stow.
Uso:

Estructura del paquete:
bash/
dot-bashrc
dot-bash_profile
dot-config/
bash/
aliases.bash

Stow con —--dotfiles:
stow —--dotfiles bash

Resultado:

~/.bashrc -> dotfiles/bash/dot-bashrc
~/.bash_profile -> dotfiles/bash/dot-bash profile
~/.config/ ...

Ventajas:
* Mantiene paquetes visibles (no ocultos por .)
* Mis fécil navegar en GUI
* Mejor para Git
Desventajas:
* Necesita usar ——dotfiles siempre
* Puede confundir
* No estandar

Recomendacion: Usar nombres normales con . en vez de dot-.

10.5 Multiple Stow Directories

Puedes tener multiples stow directories para diferentes propdsitos.

Ejemplo:
Estructura:
~/dotfiles/ # Personal configs

nvim/

~/work-dotfiles/ # Work configs
nvim/

Marcar como stow directories:

34

GESTION DE DOTFILES CON GNU STOW 35

touch ~/dotfiles/.stow
touch ~/work-dotfiles/.stow

Stow desde diferentes directorios:
cd ~/dotfiles && stow nvim
cd ~/work-dotfiles && stow nvim

.stow file: Indica que un directorio es stow directory, protegiéndolo de operaciones de
unstow.

11 Integracion con Git

11.1 Estructura de Repositorio

~/dotfiles/

.git/

.gitignore

.stowrc

README . md

LICENSE

install.sh

uninstall.sh

check-stow.sh

zsh/
.stow-local-ignore
.zshrc
.zshenv

nvim/
.stow-local-ignore
.config/

nvim/

(mas paquetes)

11.2 .gitignore Completo

~/dotfiles/.gitignore

GESTION DE DOTFILES CON GNU STOW

#
HISTORIA Y DATOS SENSIBLES
#

Shell history (puede contener comandos con passwords)
x*x/.zsh_history

x*/ .bash _history

*x%/ . history

Credenciales
.netrc
.authinfo
xx/.ssh/id_*
x%/ . ssh/.pem

Tokens
x*x/ . config/gh/hosts.yml

#
CACHE Y TEMPORALES
#

Directorios de cache
x%/ cache/

x%/ _pycache__/
xx/node_modules/

Compilados
*.pyc
*.ZwWC
.zcompdumpx*

Logs
x/*.1log

#
ARCHIVOS DE SISTEMA
#
.DS_Store
Thumbs.db
desktop.ini

#
STOW

.stow

36

GESTION DE DOTFILES CON GNU STOW 37

#
APLICACIONES ESPECIFICAS
#

Zotero (database muy grande)
zotero/.zotero/zotero/*/zotero.sqlitex
zotero/.zotero/zotero/*/storage/

VSCode

vscode/ .config/Code/User/workspaceStorage/
vscode/ .config/Code/CachedData/
vscode/.config/Code/logs/

Obsidian
obsidian/Documents/thoughts/.obsidian/workspace
obsidian/Documents/thoughts/.obsidian/workspace. json

KDE

kde/.config/session/
kde/ .cache/

11.3 Commits Best Practices

Commits semanticos

Agregar nueva aplicacién
git commit -m "feat(tmux): Add tmux configuration"

Actualizar configuracidén
git commit -m "chore(nvim): Update LSP settings"

Fix
git commit -m "fix(zsh): Correct path to starship"

Documentacidn
git commit -m "docs: Update README with stow instructions"

Refactor
git commit -m "refactor(shell): Reorganize shell configs"

11.4 Branches Strategy

Main branch
main # Configuracidén estable

Feature branches

GESTION DE DOTFILES CON GNU STOW 38

feature/add-tmux-config
feature/new-nvim-setup

Experimental
experiment/test-fish-shell
experiment/new-colorscheme
Host-specific
host/desktop-main

host/laptop-work
host/server-prod

11.5 Tags para Versiones

Tagear versiones estables
git tag -a v1.0.0 -m "Stable dotfiles v1.0.0"
git push origin v1.0.0

Ver tags
git tag -1

Checkout a tag
git checkout v1.0.0

11.6 Submodules para Plugins

Agregar plugin como submodule
cd ~/dotfiles/nvim/.config/nvim
git submodule add https://github.com/user/plugin.git pack/plugins/start/plugin

Actualizar submodules
git submodule update --init --recursive

Pull con submodules
git pull --recurse-submodules

11.7 GitHub Actions para Validacion

.github/workflows/validate.yml
name: Validate Dotfiles
on: [push, pull request]

jobs:

GESTION DE DOTFILES CON GNU STOW 39

validate:
runs-on: ubuntu-latest

steps:
- uses: actions/checkout@v2

- name: Install stow
run: sudo apt-get install -y stow

- name: Test stow (dry run)
run: |
cd $GITHUB_WORKSPACE
stow -nv */

- name: Check for sensitive data
run: |
Verificar que no haya claves SSH
if find . -name "id_rsa" -o -name "id_ed25519"; then
echo "ERROR: SSH keys found!"
exit 1
fi

12 Troubleshooting

12.1 Problema 1: Conflictos al Stow
Error:
WARNING! stowing nvim would cause conflicts:

* existing target is neither a link nor a directory: .config/nvim/init.lua
A1l operations aborted.

Causa: Ya existe un archivo/directorio en el target que no es un symlink de Stow.
Soluciones:
Opcion 1: Hacer backup y eliminar

Backup
cp ~/.config/nvim/init.lua ~/.config/nvim/init.lua.backup

Eliminar
rm ~/.config/nvim/init.lua

Stow
stow nvim

Opcion 2: Usar —adopt (cuidado)

stow —-—adopt nvim
Mueve el archivo al paquete y crea symlink

GESTION DE DOTFILES CON GNU STOW

Opcion 3: Verificar y resolver manualmente

Ver qué estd causando conflicto
stow -nv nvim

Resolver caso por caso

12.2 Problema 2: Symlinks Rotos

Error:

ls -la ~/.zshrc
lrwxrwxrwxzshrc -> dotfiles/zsh/.zshrc (broken)

Causa: El paquete fue movido o eliminado.
Soluciones:
Opcion 1: Restow

cd ~/dotfiles
stow -R zsh

Opcion 2: Desinstalar y reinstalar

stow -D zsh # Limpia symlinks rotos
stow zsh # Crea nuevos

Opcion 3: Encontrar todos los symlinks rotos

Encontrar symlinks rotos en HOME
find ~/ -xtype 1

Eliminar symlinks rotos de Stow
find ~/ -xtype 1 -lname '*dotfiles*' -delete

12.3 Problema 3: Directorio No Vacio
Error:

BUG in find_stowed_path? Absolute/relative mismatch

Causa: Stow estd confundido por la estructura de directorios.
Solucién:

Verificar que estds en el stow directory
pwd # Debe ser ~/dotfiles

Verificar estructura del paquete
tree nvim

Usar paths correctos
cd ~/dotfiles
stow -t ~ nvim

GESTION DE DOTFILES CON GNU STOW 41

12.4 Problema 4: Tree Folding Inesperado

Problema: Stow crea symlink a directorio completo en lugar de entrar y enlazar archi-
VOs.
Ejemplo:

Esperado:
~/.config/
nvim/ (directorio)
init.lua -> ~/dotfiles/nvim/.config/nvim/init.lua

Obtenido:
~/.config/
nvim -> ~/dotfiles/nvim/.config/nvim/ (symlink a directorio)

Causa: Stow hace tree folding por defecto para minimizar symlinks.
Solucion si no lo quieres:

Usar --no-folding
stow -—-no-folding nvim

0 desplegar manualmente

stow -D nvim # Remover

mkdir -p ~/.config/nvim # Crear directorio
stow ——no-folding nvim # Stow sin folding

12.5 Problema 5: Permiso Denegado

Error:
cannot stow: permission denied

Causa: No tienes permisos para crear symlinks en target directory.
Soluciones:
Para /usr/local:

Cambiar ownership
sudo chown -R $USER:$USER /usr/local

0 usar sudo (no recomendado)
sudo stow -t /usr/local myapp

Para HOME:

Verificar ownership
1ls -1d ~
drwxr-xr-x 50 user user ...

Si no eres owner:
sudo chown -R $USER:$USER ~

GESTION DE DOTFILES CON GNU STOW

12.6 Problema 6: Stow No Encuentra Paquete

Error:
stow: Cannot read package description: No such file or directory

Causa: No estés en el stow directory o el paquete no existe.
Solucion:

Verificar ubicaciodn
pwd

Listar paquetes disponibles
1s -d */

Cambiar a stow directory
cd ~/dotfiles

Stow
stow nvim

12.7 Problema 7: .stowrc No Se Aplica

Problema: Las opciones en .stowrc no se usan.
Causas y soluciones:
1. Archivo en ubicacién incorrecta:

.stowrc debe estar en:
- Directorio actual (donde ejecutas stow)
-0~/

Verificar:

1ls -1la .stowrc
ls -la ~/.stowrc

2. Sintaxis incorrecta:

Correcto:
-—target=/home/user

Incorrecto:
target=/home/user # Sin --

3. Variables no expandidas:

Use $HOME con comillas si es necesario
--target=$HOME

42

GESTION DE DOTFILES CON GNU STOW

12.8 Problema 8: Stow Muy Lento

Causa: Directorios muy grandes o muchos archivos.
Soluciones:
1. Usar ignore lists:

Ignorar directorios grandes
~/.stow-global-ignore
node_modules

__pycache__

.cache

storage

2. Evitar stowing todo junto:

En lugar de:
stow */ # Lento si hay muchos paquetes

Hacer:
stow nvim zsh git # Solo los necesarios

3. Simplificar estructura:

Dividir paquetes grandes en paquetes mas pequefios

13 Scripts de Automatizacion
13.1 Script 1: install.sh Completo

Ya proporcioné un ejemplo arriba. Aqui una versién mas robusta:

#!/bin/bash
~/dotfiles/install.sh

set -e

SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
DOTFILES="$SCRIPT_DIR"
BACKUP_DIR="$HOME/dotfiles-backup-$(date +)Y/m¥%d-%H%M%S) "
LOG_FILE="$DOTFILES/install.log"

Colores
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
BLUE="'\033[0;34m'
NC='\033[0Om"'

Logging

43

GESTION DE DOTFILES CON GNU STOW 44

log() {
echo -e "$1" | tee -a "$LOG_FILE"
}

log_info() {
log "${BLUE}[$(date +'%Y-Ym-%d %H:%M:%S')]1${NC} ${GREEN} [INFO]${NC} $1"
}

log warn() {
log "${BLUE}[$(date +'%Y-%m-%d %H:%M:%S')I1${NC} ${YELLOW} [WARN]${NC} $1"
}

log_error() {
log "${BLUE}[$(date +'%Y-%m-%d %H:%M:%S')]1${NC} ${RED} [ERROR]${NC} $1"
3

Verificar dependencias
check_dependencies() {
log_info "Verificando dependencias..."

if ! command -v stow &> /dev/null; then
log _error "Stow no esta instalado"
read -p ";Instalar stow? [Y/n] " -n 1 -r
echo
if [[! $REPLY =~ ~[Nn]$ 1]; then
if command -v apt &> /dev/null; then
sudo apt update && sudo apt install -y stow
elif command -v pacman &> /dev/null; then
sudo pacman -S stow
elif command -v brew &> /dev/null; then
brew install stow
else
log_error "No se pudo instalar stow automdticamente"
exit 1
fi
else
exit 1
fi
fi

log _info " Dependencias OK"

Backup de archivo/directorio existente
backup_if exists() {

local path="$1"

local name="$2"

GESTION DE DOTFILES CON GNU STOW 45

if [-e "$path"] && [! -L "$path"]; then
log _warn "Existe: $path"
mkdir -p "$BACKUP_DIR"
cp -r "$path" "$BACKUP_DIR/"
log_info "Backup: $name - $BACKUP_DIR/"
return O

fi

return 1

Verificar conflictos antes de stow
check _conflicts() {
local package="8$1"

if stow -nv "$package" 2>&1 | grep -q "WARNING\|ERROR"; then
return 1

fi

return O

Stow paquete con manejo de errores
stow_package() {

local package="8$1"

local force="${2:-false}"

if [! -d "$package"]; then
log_error "Paquete no existe: $package"
return 1

fi

log_info "Procesando: $package"

Check conflicts
if ! check_conflicts "$package"; then
log_warn "Conflictos detectados en: $package"

if ["$force" = "true"]; then
log_info "Forzando instalacién..."
Aqui podrias implementar 1légica de backup automatico
else
read -p ";Continuar? [y/N] " -n 1 -r
echo
if [[! $REPLY =~ “[Yy]l$ 11; then
log_error "Saltado: $package"
return 1
fi
fi

GESTION DE DOTFILES CON GNU STOW

fi

Stow
if stow -v "$package"; then
log_info " Instalado: $package"
return O
else
log_error " Error al instalar: $package"
return 1
fi

Mostrar ayuda
show_help() {
cat << EOF
Uso: $0 [opciones] [paquetes...]

Opciones:
-h, --help Mostrar esta ayuda
-a, ——all Instalar todos los paquetes
-f, --force Forzar instalacién (saltear prompts)
-1, --list Listar paquetes disponibles
-d, --dry-run Simular sin hacer cambios
Ejemplos:
$0 nvim zsh git # Instalar paquetes especificos
$0 --all # Instalar todo
$0 —-list # Ver paquetes disponibles
EQF
}

Listar paquetes disponibles
list_packages() {
log_info "Paquetes disponibles:"
cd "$DOTFILES"
for package in */; do
package=${package’/?}

if ["$package" != ".git"] && [-d "$package"]; then
echo " - $package"
fi
done
}
Main
main() {

local force=false
local dry_run=false

46

GESTION DE DOTFILES CON GNU STOW

local packages=()

Parse argumentos
while [[$# -gt 0 1]; do
case $1 in

-h|--help)
show_help
exit O

-al--all)

cd "$DOTFILES"
packages=($(1s -d */ | sed 's#/#'
shift

-f|--force)
force=true
shift

-1|--1list)
list_packages
exit O

-d|--dry-run)
dry_run=true
shift

*)
packages+=("$1")
shift

esac
done

Verificar que hay paquetes para instalar

if [${#packages[@]} -eq O]; then
log_error "No se especificaron paquetes"
show_help
exit 1

fi

Iniciar log

log_info "=== Instalacién de Dotfiles ==="
log_info "Directorio: $DOTFILES"

log_info "Paquetes: ${packages[*]}"

Verificar dependencias
check_dependencies

| grep -v

N

47

GESTION DE DOTFILES CON GNU STOW

Cambiar a dotfiles directory
cd "$DOTFILES" || exit 1

Dry run si se especificd
if ["$dry_run" = true]; then
log_info "=== DRY RUN ==="
for package in "${packages[@]}"; do
log_info "Simulating: $package"
stow -nv "$package" || true
done
exit O
fi

Instalar paquetes
local success=0
local failed=0

for package in "${packages[@]}"; do
if stow_package "$package" "$force"; then
((success++))

else
((failed++))
fi
done
Resumen
log _info ""
log info '"=== Resumen ==="

log_info "Exitosos: $success"

if [$failed -gt O]; then
log_warn "Fallidos: $failed"

fi

if [-d "$BACKUP_DIR"]; then
log_info "Backups en: $BACKUP_DIR"
fi

log_info "Log completo en: $LOG_FILE"

X
Ejecutar
main "$Q0"

13.2 Script 2: update.sh

GESTION DE DOTFILES CON GNU STOW 49

#!/bin/bash
~/dotfiles/update.sh

set -e

DOTFILES="$HOME/dotfiles"

cd "$DOTFILES"

echo " Actualizando dotfiles..."

Pull latest changes
git pull origin main

Restow todos los paquetes instalados
for package in */; do
package=${package’/}

Verificar si estd stowed
if find "$HOME" -maxdepth 2 -type 1 -lname "*x$DOTFILES/$package/*" 2>/dev/null |
echo " Restowing $package..."
stow -R "$package"
fi
done

echo " Actualizacién completa!"

13.3 Script 3: check.sh

#!/bin/bash
~/dotfiles/check.sh

DOTFILES="$HOME/dotfiles"

echo " Estado de paquetes:"
eChO n n

cd "$DOTFILES"

for package in */; do
package=${package’/}

if ["$package" = ”.git"]; then
continue

fi

Buscar primer archivo del paquete

GESTION DE DOTFILES CON GNU STOW 50

first_file=$(find "$package" -type f -o -type 1 | head -1)

if [-z "$first file"]; then
echo " $package (vacio)"
continue

fi

Convertir a path en HOME
home_path="$HOME/${first_file#$package/}"

if [-L "$home_path"]; then
target=$(readlink "$home path")

if [["$target" == *"$DOTFILES/$package"* 1]; then
echo " $package"
else
echo " $package (symlink apunta a: $target)"
fi
elif [-e "$home_path"]; then
echo " $package (existe pero no es symlink)"
else
echo " $package (no instalado)"
fi
done

Verificar symlinks rotos

echo ""

echo " Verificando symlinks rotos..."

broken_links=$(find "$HOME" -maxdepth 3 -xtype 1 -lname "*$DOTFILES/*" 2>/dev/null)

if [-z "$broken links"]; then
echo " No hay symlinks rotos"

else
echo " Symlinks rotos encontrados:"
echo "$broken links"

fi

13.4 Script 4: clean.sh

#!/bin/bash
~/dotfiles/clean.sh

DOTFILES="$HOME/dotfiles"
echo " Limpiando symlinks huérfanos..."

Encontrar symlinks rotos que apuntan a dotfiles
find "$HOME" -maxdepth 3 -xtype 1 -lname "*$DOTFILES/*" 2>/dev/null | while read -r b

GESTION DE DOTFILES CON GNU STOW 51

echo "Eliminando: $broken link"
rm "$broken link"
done

echo " Limpieza completal"

14 Casos de Uso Practicos
14.1 Caso 1: Crear Dotfiles desde Cero (Primera Vez)

Escenario: Nunca has usado Stow, quieres empezar desde cero organizando tus confi-
guraciones.
Objetivo: Crear estructura de dotfiles, migrar configs existentes, versionar con Git.

14.1.1 Paso 1: Preparacién

1.1 Instalar herramientas necesarias

sudo pacman -S stow git zsh starship # Arch/Archcraft
o0

sudo apt install stow git zsh # Kubuntu/Debian

1.2 Verificar instalaciodn
stow —-version
git --version

1.3 Crear directorio para dotfiles
mkdir -p ~/dotfiles
cd ~/dotfiles

1.4 Inicializar Git
git init
git branch -M main

1.5 Configurar Git (si no estad configurado)
git config user.name "Edison Achalma"
git config user.email "achalmaedison®@gmail.com"

14.1.2 Paso 2: Crear Estructura de Paquetes

Crear paquetes para cada aplicacidn
cd ~/dotfiles

Git

mkdir -p git

Shell (Zsh)

mkdir -p shell

Terminal (Konsole)

GESTION DE DOTFILES CON GNU STOW

mkdir -p terminal
Editor (VSCode)
mkdir -p vscode

KDE

mkdir -p kde

14.1.3 Paso 3: Migrar Configuraciones Existentes
3.1 Git (.gitconfig):

Verificar que existe
ls -la ~/.gitconfig

Mover al paquete
mv ~/.gitconfig git/

Verificar
1ls -la git/.gitconfig

3.2 Shell (Zsh):

Crear estructura
mkdir -p shell

Mover archivos
mv ~/.zshrc shell/
mv ~/.zshenv shell/ 2>/dev/null || true # Si existe

Si tienes starship
mv ~/.config/starship.toml shell/ 2>/dev/null || true

Verificar
tree shell/

shell/
.zshrc
.Zshenv

3.3 Terminal (Konsole):

Crear estructura que replica HOME
mkdir -p terminal/.config

Mover config de Konsole
mv ~/.config/konsolerc terminal/.config/

Si tienes perfiles personalizados

cp -r ~/.local/share/konsole terminal/.local/share/ 2>/dev/null || true

52

GESTION DE DOTFILES CON GNU STOW

Verificar

tree terminal/

terminal/

.config/

konsolerc

3.4 VSCode:

Crear estructura
mkdir -p vscode/.config/Code/User

Mover settings

mv ~/.config/Code/User/settings.json vscode/.config/Code/User/
mv ~/.config/Code/User/keybindings.json vscode/.config/Code/User/

Snippets

53

mv ~/.config/Code/User/snippets vscode/.config/Code/User/ 2>/dev/null || true

Verificar
tree vscode/.config/Code/User/

3.5 KDE Plasma:

Crear estructura
mkdir -p kde/.config

Mover configuraciones principales

mv ~/.config/kdeglobals kde/.config/
mv ~/.config/dolphinrc kde/.config/
mv ~/.config/kwinrc kde/.config/

mv ~/.config/plasmarc kde/.config/

mv ~/.config/plasma-org.kde.plasma.desktop-appletsrc kde/.config/
mv ~/.config/mimeapps.list kde/.config/

Verificar
1s kde/.config/

14.1.4 Paso 4: Crear Ignore Lists

4.1 Global ignore:

cat > ~/.stow-global-ignore << 'EOF'
Backups

R

.x\ . bak

.*\.old

.*\.orig

.*\ . swp

GESTION DE DOTFILES CON GNU STOW

Historia
\.zsh_history
\.bash_history

Cache
\.cache
__pycache__

Sistema
\.DS_Store
Thumbs\ .db

Git
\.git
\.gitignore

Documentacidn
~/README . *
~/LICENSE. *

EQF

4.2 Ignore por paquete (shell):

cat > shell/.stow-local-ignore << 'EOF'
Historia (datos sensibles)
~/\.zsh_history

~/\.bash_history

Cache compilado
\ . zcompdump
EQF

4.3 Ignore para VSCode:

cat > vscode/.stow-local-ignore << 'EOF'
Cache y logs
~/\.config/Code/CachedData/
~/\.config/Code/logs/
~/\.config/Code/User/workspaceStorage/

Backups automaticos

~/\.config/Code/Backups/
EQOF

14.1.5 Paso 5: Crear .gitignore

GESTION DE DOTFILES CON GNU STOW

cat > .gitignore << 'EOF'

#

BACKUPS

*.bak
*.0ld
*.orig
* . SWp
*.SWO

DATOS SENSIBLES

Historia de shells
x*x/.zsh_history
xx/.bash_history

SSH keys
xx/.ssh/id_x
x*/ . ssh/*.pem

Credenciales
.netrc
.authinfo

#
CACHE Y TEMPORALES

#
xx/.cache/
xx/ pycache__/

*.pyc
. zcompdump*

#

STOW

.stow

#
LOGS

#
x/*.1log
*.log

#

SISTEMA

55

GESTION DE DOTFILES CON GNU STOW

#
.DS_Store
Thumbs .db
desktop.ini
EQF

14.1.6 Paso 6: Crear .stowrc

cat > .stowrc << 'EQOF'
Target es siempre HOME
-—target=$HOME

Ignorar archivos comunes
—-—ignore='"\.git'
—-—ignore='"README. *'
—--ignore='"LICENSE.x*'
--ignore='\.gitignore$'
-—ignore='.*\.swp$'
-—ignore="'.*~$'
--ignore='"install\.sh$'
—--ignore='"\.stowrc$'

EQOF

14.1.7 Paso 7: Instalar con Stow (Primera Vez)

Navegar a dotfiles
cd ~/dotfiles

Dry run primero para cada paquete
stow -nv git

stow —nv shell

stow —nv terminal

stow -nv vscode

stow —nv kde

Si todo 0K, instalar realmente
stow git shell terminal vscode kde

Verificar symlinks
ls -la ~/.gitconfig
lrwxrwxrwxgitconfig -> dotfiles/git/.gitconfig

ls -la ~/.zshrc
lrwxrwxrwxzshrc -> dotfiles/shell/.zshrc

ls -la ~/.config/konsolerc
lrwxrwxrwx ... konsolerc -> ../dotfiles/terminal/.config/konsolerc

GESTION DE DOTFILES CON GNU STOW

14.1.8 Paso 8: Verificar que Todo Funciona

8.1 Verificar Git
git config --1list | head -5

8.2 Verificar Zsh
cat ~/.zshrc | head -10

8.3 Verificar VSCode
cat ~/.config/Code/User/settings.json | head -10

8.4 Abrir aplicaciones para probar
code # VSCode debe cargar tu config
konsole # Konsole debe tener tu configuracidén

14.1.9 Paso 9: Crear Scripts de Ayuda

9.1 Script de instalacion:

cat > install.sh << 'EQOF'
#!/bin/bash
set -e

DOTFILES="$HOME/dotfiles"
echo " Instalando dotfiles..."
cd "$DOTFILES"

Lista de paquetes
PACKAGES=(
"git n
"shell"
"terminal"
"vscode"
"kde"

Instalar cada paquete

for pkg in "${PACKAGES[@]}"; do
echo " Instalando $pkg..."
stow "$pkg"

done

echo " jInstalacién completal!"
EOF

chmod +x install.sh

57

GESTION DE DOTFILES CON GNU STOW

9.2 Script de verificacion:

cat > check.sh << 'EOF'
#!/bin/bash

DOTFILES="$HOME/dotfiles"

echo " Verificando dotfiles..."
echo ""

cd "$DOTFILES"

for pkg in */; do
pkg=${pkgh/}

Buscar primer archivo
first file=$(find "$pkg" -type f | head -1)

if [-z "$first file"]; then
continue
fi

Path en HOME
home_path="$HOME/${first_file#$pkg/}"

if [-L "$home path"]; then
echo " $pkg"
else
echo " $pkg (no instalado)"
fi
done
EQF

chmod +x check.sh

14.1.10 Paso 10: Crear Repositorio en GitHub

10.1 Agregar todo a Git
cd ~/dotfiles
git add .

10.2 Commit inicial
git commit -m "Initial commit: Estructura basica de dotfiles

Git configuration
Zsh/Starship setup

- Konsole terminal config
VSCode settings

GESTION DE DOTFILES CON GNU STOW 59

- KDE Plasma configuration"

10.3 Crear repo en GitHub (via navegador o gh CLI)
Opcidén A: Navegador

Ve a https://github.com/new

Nombre: .dotfiles

Descripcidén: "Dotfiles para Archcraft/Kubuntu con Stow"
Piblico o Privado

NO inicializar con README (ya lo tienes)

H OH O H O H H H R

Opcidén B: GitHub CLI
gh repo create .dotfiles --public --source=. --remote=origin

10.4 Agregar remote y push
git remote add origin https://github.com/achalmaedison/.dotfiles.git

git push -u origin main

14.1.11 Paso 11: Crear README.md

cat > README.md << 'EOF'
Dotfiles
Configuraciones personales para Archcraft/Kubuntu gestionadas con GNU Stow.

Estructura

~/dotfiles/
git/ # Git config
shell/ # Zsh + Starship
terminal/ # Konsole
vscode/ # Visual Studio Code
kde/ # KDE Plasma

Instalaciodn

" “bash
Clonar
git clone https://github.com/achalmaedison/.dotfiles.git ~/dotfiles

Instalar Stow

sudo pacman -S stow # Arch

o0

sudo apt install stow # Debian/Ubuntu

GESTION DE DOTFILES CON GNU STOW

Instalar todo
cd ~/dotfiles
./install.sh

0 instalar selectivo
stow git shell terminal

Actualizar

" “bash

cd ~/dotfiles
git pull

stow -R */

Requisitos

- stow

- git

- zsh

- starship (opcional)

- VSCode (opcional)

- KDE Plasma (opcional)
EQF

git add README.md
git commit -m "docs: Add README"
git push

14.2 Caso 2: Replicar Dotfiles en Laptop Nueva

60

Escenario: Acabas de comprar/instalar una laptop nueva con Archcraft y quieres repli-

car tu setup completo.

Objetivo: Clonar tu repo de dotfiles e instalar todo en la nueva maquina.

14.2.1 Paso 1: Preparar Nueva Maquina

1.1 Actualizar sistema (Archcraft/Arch)

sudo pacman —-Syu

1.2 Instalar herramientas base

sudo pacman -S git stow zsh base-devel

1.3 Verificar HOME vacio (opcional)
1ls -1la ~/ | grep ""\." | wc -1

Deberias ver solo archivos basicos del sistema

GESTION DE DOTFILES CON GNU STOW

14.2.2 Paso 2: Backup de Configs Existentes (Precaucion)

2.1 Crear directorio de backup
mkdir -p ~/dotfiles-backup-$(date +%Y%mid)
BACKUP_DIR=~/dotfiles-backup-$(date +%Y%mJd)

2.2 Backup de archivos que podrian existir

cp ~/.zshrc "$BACKUP_DIR/" 2>/dev/null || true

cp ~/.gitconfig "$BACKUP_DIR/" 2>/dev/null || true

cp -r ~/.config/Code "$BACKUP_DIR/" 2>/dev/null || true

echo "Backup guardado en: $BACKUP_DIR"
1s -la "$BACKUP_DIR"

14.2.3 Paso 3: Clonar Repositorio

3.1 Clonar tu repo
cd ~
git clone https://github.com/achalmaedison/.dotfiles.git dotfiles

3.2 Verificar contenido
cd dotfiles
1s -1a

Deberias ver:
git/

shell/
terminal/
vscode/
kde/

install.sh
.gitignore
README.md

14.2.4 Paso 4: Revisar y Ajustar (Si Necesario)

4.1 Ver qué paquetes hay
1ls -d */
git/ kde/ shell/ terminal/ vscode/

4.2 Ver estructura de un paquete
tree shell/

shell/
.zshrc
.zshenv

4.3 (Opcional) Editar configs antes de instalar

GESTION DE DOTFILES CON GNU STOW

Por ejemplo, cambiar username en git
nano git/.gitconfig

14.2.5 Paso 5: Instalar Dependencias

5.1 Aplicaciones de tu setup
sudo pacman -S \
zsh \
starship \
konsole \
code \ # VSCode (si estad en repos)
plasma-desktop \
dolphin \
kate \
okular

5.2 Si usas AUR (yay/paru)
VSCode desde AUR
yay -S visual-studio-code-bin

Starship (si no estad en repos oficiales)
yay -S starship-bin

5.3 Verificar instalaciones
which zsh

which starship

which code

14.2.6 Paso 6: Dry Run (Simulacion)

Navegar a dotfiles
cd ~/dotfiles

Simular instalacidén para ver qué pasaria
stow —nv git

stow -nv shell

stow —nv terminal

stow —nv vscode

stow —nv kde

Verificar que no hay errores
Si hay conflictos, verds warnings

14.2.7 Paso 7: Resolver Conflictos (Si Existen)

Si ves algo como:

62

GESTION DE DOTFILES CON GNU STOW 63
WARNING! stowing shell would cause conflicts:
* existing target is neither a link nor a directory: .zshrc
Resolver:

Opcién A: Eliminar archivo existente
rm ~/.zshrc

Opcidn B: Mover a backup (mds seguro)
mv ~/.zshrc ~/dotfiles-backup-$(date +}Y%mid)/

Luego intentar stow nuevamente
stow —nv shell

14.2.8 Paso 8: Instalar Todo

Opcion A: Con script (recomendado):

cd ~/dotfiles
./install.sh

Opcion B: Manual:
cd ~/dotfiles
Instalar uno por uno
stow git

echo " Git instalado"

stow shell
echo " Shell instalado"

stow terminal
echo " Terminal instalado"

stow vscode
echo " VSCode instalado"

stow kde
echo " KDE instalado"

Opcion C: Todo de una vez:

cd ~/dotfiles
stow git shell terminal vscode kde

14.2.9 Paso 9: Verificar Instalacion

GESTION DE DOTFILES CON GNU STOW 64

9.1 Verificar symlinks creados
ls -la ~/.gitconfig
lrwxrwxrwxgitconfig -> dotfiles/git/.gitconfig

ls -la ~/.zshrc
lrwxrwxrwxzshrc -> dotfiles/shell/.zshrc

ls -la ~/.config/Code/User/settings.json
lrwxrwxrwx ... settings.json -> ../../../../dotfiles/vscode/.config/Code/User/setti

9.2 Usar script de verificacidn
cd ~/dotfiles
./check.sh

14.2.10 Paso 10: Configurar Shell

10.1 Cambiar shell a Zsh (si no lo es)
chsh -s /bin/zsh

10.2 Logout y login para aplicar
0 simplemente:
exec zsh

10.3 Verificar que Zsh cargd tu config
echo $SHELL
/bin/zsh

Ver prompt (si usas starship)
starship --version

14.2.11 Paso 11: Instalar Dependencias Especificas
11.1 Extensiones de VSCode:

Si guardaste lista de extensiones
(Opcidn: guardar en dotfiles)
code --list-extensions > ~/dotfiles/vscode/extensions.txt

En nueva miquina:
while read -r ext; do

code --install-extension "$ext"
done < ~/dotfiles/vscode/extensions.txt

11.2 Plugins de Zsh (si usas):

Oh-My-Zsh
sh —c "$(curl -fsSL https://raw.github.com/ohmyzsh/ohmyzsh/master/tools/install.sh)"

GESTION DE DOTFILES CON GNU STOW 65

Zsh plugins (ejemplo: zsh-autosuggestions)
git clone https://github.com/zsh-users/zsh-autosuggestions \
~/ .oh-my-zsh/custom/plugins/zsh-autosuggestions

11.3 Temas de KDE (si los tienes):

Si tienes temas personalizados en dotfiles
Instalarlos desde System Settings

14.2.12 Paso 12: Probar Todo

12.1 Git

git config --list | grep user

user.name=Edison Achalma

user.email=achalmaedison@gmail.com

12.2 Zsh
cat ~/.zshrc | head -5

12.3 VSCode
code
Deberia cargar con tu configuracidn

12.4 Konsole
konsole
Deberia usar tu configuracidn

12.5 KDE
Logout/login para ver cambios en KDE

14.2.13 Paso 13: Ajustes Finales

Si algo no funciona, hacer debug:

Ver qué apunta cada symlink
find ~ -maxdepth 2 -type 1 -1s | grep dotfiles

Si un symlink estd roto:
stow -D paquete-con-problema
stow paquete-con-problema

Verificar logs
journalctl --user -xe | grep -i error

14.3 Caso 3: Actualizar Configs y Sincronizar

Escenario: Has estado usando tus dotfiles y has hecho cambios en tu maquina principal.
Quieres sincronizar con GitHub y otras maquinas.

GESTION DE DOTFILES CON GNU STOW

14.3.1 Paso 1: Identificar Cambios

1.1 Ver qué archivos cambiaron
cd ~/dotfiles
git status

Ejemplo de output:
modified: shell/.zshrc
modified: vscode/.config/Code/User/settings.json

1.2 Ver diferencias especificas
git diff shell/.zshrc
git diff vscode/.config/Code/User/settings. json

1.3 Ver todos los cambios
git diff

14.3.2 Paso 2: Probar Cambios Localmente

Si editaste configs directamente en HOME (a través de symlinks),
los cambios ya estan en ~/dotfiles/

2.1 Verificar que todo funciona
source ~/.zshrc # Para shell
code # Abrir VSCode para verificar settings

2.2 Si hay problemas, revertir temporalmente
cd ~/dotfiles
git checkout -- shell/.zshrc # Revertir cambios

Probar de nuevo

14.3.3 Paso 3: Commit Cambios

cd ~/dotfiles

3.1 Agregar archivos modificados

git add shell/.zshrc

git add vscode/.config/Code/User/settings. json

0 agregar todo:
git add -A

3.2 Ver qué se va a commitear
git status

3.3 Commit con mensaje descriptivo

66

GESTION DE DOTFILES CON GNU STOW

git commit -m "chore(shell): Update Zsh aliases and PATH

- Add alias for git status
- Update PATH to include ~/.local/bin
- Remove deprecated exports"

git commit -m "feat(vscode): Enable format on save

- Set editor.formatOnSave to true
- Add Python formatting rules
- Update keybindings for terminal"

14.3.4 Paso 4: Push a GitHub

4.1 Push cambios
git push origin main

4.2 Verificar en GitHub
Ir a https://github.com/achalmaedison/.dotfiles
Deberias ver tus commits recientes

14.3.5 Paso 5: Actualizar Otras Maquinas

En laptop/otra maquina:

5.1 Pull cambios
cd ~/dotfiles
git pull origin main

5.2 Los symlinks reflejan cambios automdticamente!
cat ~/.zshrc # Ya tiene los cambios

5.3 Recargar configs
source ~/.zshrc # Shell
VSCode se recarga automdticamente

5.4 Si hay cambios en estructura (archivos nuevos/eliminados):
stow -R shell # Restow para actualizar symlinks
stow —-R vscode

14.3.6 Paso 6: Manejar Conflictos (Si Existen)

Si modificaste el mismo archivo en dos maquinas:

cd ~/dotfiles
git pull origin main

Si hay conflicto:

67

GESTION DE DOTFILES CON GNU STOW

CONFLICT (content): Merge conflict in shell/.zshrc

6.1 Ver conflicto
git status
both modified: shell/.zshrc

6.2 Editar archivo
nano shell/.zshrc

Veras marcadores:
<<<<<<< HEAD
(tu cambio local)

(cambio de GitHub)
>>>>>>> origin/main

H O H H

6.3 Resolver manualmente, eliminar marcadores

6.4 Marcar como resuelto

git add shell/.zshrc

git commit -m "merge: Resolve conflict in .zshrc"
git push

14.4 Caso 4: Agregar Nueva Aplicacion (Kate Editor)

Escenario: Instalaste Kate y quieres agregar su configuracion a tus dotfiles.

14.4.1 Paso 1: Usar Kate y Configurar

1.1 Instalar Kate
sudo pacman -S kate

1.2 Abrir y configurar
kate

Configurar:

- Settings - Configure Kate

- Cambiar tema, shortcuts, plugins, etc.

- Cerrar Kate (configs se guardan automaticamente)

14.4.2 Paso 2: Localizar Archivos de Config

2.1 Archivos de configuracién estan en ~/.config/
ls -la ~/.config/ | grep kate
drwxr-xr-x - achalmaedison kate/

2.2 Ver qué hay dentro

68

GESTION DE DOTFILES CON GNU STOW

ls -la ~/.config/kate/
katerc

externaltools/

formatting/

lspclient/

2.3 También puede haber datos en ~/.local/share/
1ls -la ~/.local/share/ | grep kate

14.4.3 Paso 3: Crear Paquete Kate

3.1 Crear estructura que replica HOME
cd ~/dotfiles
mkdir -p kate/.config

3.2 Copiar configs (NO mover todavia)
cp -r ~/.config/kate kate/.config/

3.3 También copiar datos locales si existen
mkdir -p kate/.local/share
cp -r ~/.local/share/kate kate/.local/share/ 2>/dev/null || true

3.4 Verificar estructura

tree kate/

kate/

.config/

kate/

katerc

externaltools/
formatting/
lspclient/
.local/

share/

kate/

14.4.4 Paso 4: Crear Ignore List para Kate

Crear ignore para archivos que no queremos versionar
cat > kate/.stow-local-ignore << 'EOF'

Sesiones y cache

~/\.config/kate/sessions/
~/\.local/share/kate/.*\.cache

Logs
~/\.config/kate/.*\.log

Archivos temporales

69

GESTION DE DOTFILES CON GNU STOW

~/\.config/kate/.*\.tmp
~/\.config/kate/.*\.sup
EOF

14.4.5 Paso 5: Test Stow (Dry Run)

cd ~/dotfiles

5.1 Ver qué haria stow
stow —nv kate

Deberias ver algo como:
LINK: .config/kate => dotfiles/kate/.config/kate

14.4.6 Paso 6: Hacer Backup y Eliminar Original

6.1 Backup por seguridad
cp -r ~/.config/kate ~/backup-kate-$(date +,Y/m%d)

6.2 Eliminar original
rm -rf ~/.config/kate
rm -rf ~/.local/share/kate # Si copiaste esto también

6.3 Verificar que se elimind

1ls ~/.config/ | grep kate
(no deberia aparecer nada)

14.4.7 Paso 7: Stow Kate

cd ~/dotfiles

7.1 Instalar con stow
stow kate

7.2 Verificar symlinks
ls -la ~/.config/ | grep kate
lrwxrwxrwx - achalmaedison kate -> ../dotfiles/kate/.config/kate

7.3 Verificar que Kate funciona

kate
Deberia abrir con tu configuracidén

14.4.8 Paso 8: Versionar con Git

70

GESTION DE DOTFILES CON GNU STOW

cd ~/dotfiles

8.1 Agregar al staging
git add kate/

8.2 Commit
git commit -m "feat(kate): Add Kate editor configuration

Custom keybindings

LSP configuration

Theme and appearance settings
External tools setup"

8.3 Push
git push origin main

14.4.9 Paso 9: Actualizar README

cd ~/dotfiles

Agregar Kate a la lista de paquetes
nano README.md

Agregar:
- kate/ # Kate editor

Commit cambio

git add README.md

git commit -m "docs: Add Kate to README"
git push

14.4.10 Paso 10: Actualizar Script de Instalaciéon

Si tienes install.sh, agregar kate
nano install.sh

Agregar "kate" a la lista de PACKAGES:
PACKAGES=(

"git”

"shell"

"terminal"

"vscode"

"kde"

"kate" # <-- Agregar esto

H OH H H H =

71

GESTION DE DOTFILES CON GNU STOW 72

git add install.sh
git commit -m "chore(scripts): Add kate to install script"
git push

14.5 Caso 5: Migrar de Kubuntu a Archcraft

Escenario: Usabas Kubuntu, ahora instalaste Archcraft. Quieres migrar tus dotfiles pero
adaptdndolos.

14.5.1 Paso 1: Evaluar Diferencias

1.1 En tu Kubuntu original, ver qué tienes
cd ~/dotfiles
1s -d */

Ejemplo:
git/ shell/ terminal/ vscode/ kde/ digikam/ okular/ ...

+=*

1.2 Identificar qué es compatible con Archcraft
Compatible: git, shell, vscode
Adaptar: kde (Archcraft puede usar i3/bspwm)
No necesario: apps especificas de Kubuntu

14.5.2 Paso 2: En Archcraft Nueva

2.1 Instalar Stow
sudo pacman -S stow git

2.2 Clonar dotfiles

cd ~
git clone https://github.com/achalmaedison/.dotfiles.git dotfiles

14.5.3 Paso 3: Crear Branch para Archcraft

cd ~/dotfiles

3.1 Crear branch especifica
git checkout -b archcraft-setup

3.2 Ver qué paquetes hay
1s -d */

14.5.4 Paso 4: Instalar Paquetes Universales

GESTION DE DOTFILES CON GNU STOW

cd ~/dotfiles

4.1 Paquetes que funcionan en cualquier distro

stow git

stow shell

stow terminal # Si Archcraft usa Konsole, sino adaptar

14.5.5 Paso 5: Adaptar o Crear Nuevos Paquetes
5.1 Window Manager (Si Archcraft usa i3/bspwm):

Crear nuevo paquete para i3 (ejemplo)
mkdir -p i3/.config/i3

Configurar i3
i3-config-wizard
0 copiar config existente

Mover config al paquete
mv ~/.config/i3/config i3/.config/i3/

Stow
stow i3

5.2 Terminal (Si Archcraft usa otro terminal):
Supongamos que Archcraft usa Alacritty en vez de Konsole

Crear paquete
mkdir -p alacritty/.config/alacritty

Config de Alacritty
cat > alacritty/.config/alacritty/alacritty.yml << 'EOF'
Alacritty configuration
font:
size: 11.0
normal:
family: JetBrains Mono

window:
opacity: 0.95

colors:
Tu esquema de colores...
EQF

Stow
stow alacritty

73

GESTION DE DOTFILES CON GNU STOW 74

5.3 Polybar (Si Archcraft lo usa):
mkdir -p polybar/.config/polybar

Copiar config de Archcraft default
cp /etc/polybar/config polybar/.config/polybar/

Personalizar
nano polybar/.config/polybar/config

Stow
stow polybar

14.5.6 Paso 6: No Instalar Paquetes Incompatibles

NO hacer stow de paquetes especificos de Kubuntu/KDE:

- kde/
- plasma-org.kde.plasma.desktop-appletsrc
- etc.

Estos causarian errores en Archcraft

14.5.7 Paso 7: Commit Cambios

cd ~/dotfiles

Agregar nuevos paquetes
git add i3/ alacritty/ polybar/

Commit en branch archcraft
git commit -m "feat(archcraft): Add i3, Alacritty, Polybar configs

i3 window manager configuration
Alacritty terminal setup
Polybar panel configuration"

Push branch
git push origin archcraft-setup

14.5.8 Paso 8: Estrategia de Branches

Opcion A: Mantener branches separadas:

Branch main: Para Kubuntu
Branch archcraft-setup: Para Archcraft

Puedes hacer cherry-pick de commits especificos:

GESTION DE DOTFILES CON GNU STOW

git checkout main
git cherry-pick <commit-hash> # Traer cambio especifico de otra branch

Opcion B: Usar estructura de directorios:

Reorganizar dotfiles:
~/dotfiles/
common/ # Configs universales
git/
shell/
vscode/
kubuntu/ # Especificos de Kubuntu
kde/
konsole/
archcraft/ # Especificos de Archcraft
i3/
alacritty/
polybar/

Instalar segin distro:

cd ~/dotfiles/common && stow */
cd ~/dotfiles/archcraft && stow */

14.5.9 Paso 9: Script de Instalacién por Distro

cat > install-arch.sh << 'EOF'
#!/bin/bash
Install script para Archcraft

DOTFILES="$HOME/dotfiles"

echo " Instalando dotfiles para Archcraft..."
Common packages

cd "$DOTFILES/common"

stow git shell vscode

Archcraft-specific

cd "$DOTFILES/archcraft"

stow i3 alacritty polybar rofi

echo " jInstalacién completal!"
EOF

chmod +x install-arch.sh

75

GESTION DE DOTFILES CON GNU STOW

14.5.10 Paso 10: Mantener Ambos Sistemas

Cuando hagas cambios en configs comunes (git, shell, vscode):

1. Hacer cambio en cualquier maquina
cd ~/dotfiles
nano common/shell/.zshrc

2. Commit
git add common/shell/.zshrc
git commit -m "chore(shell): Update aliases"

3. Push
git push origin main

4. En otra maquina (Kubuntu o Archcraft):

git pull origin main
Los symlinks se actualizan automaticamente

14.6 Caso 6: Probar Nueva Configuracion Sin Romper

76

Escenario: Quieres probar una nueva configuraciéon de Neovim sin afectar tu setup ac-

tual.

14.6.1 Paso 1: Crear Branch Experimental

cd ~/dotfiles

1.1 Crear branch
git checkout -b experiment/nvim-lazyvim

1.2 Verificar que estéds en la branch
git branch
* experiment/nvim-lazyvim

main

14.6.2 Paso 2: Crear Paquete Alternativo

2.1 Crear nuevo paquete con nombre distinto
mkdir -p nvim-lazy/.config

2.2 Instalar LazyVim (ejemplo)

git clone https://github.com/LazyVim/starter nvim-lazy/.config/nvim

2.3 Estructura
tree nvim-lazy/.config/nvim/ -L 1

GESTION DE DOTFILES CON GNU STOW

14.6.3 Paso 3: Desinstalar Neovim Actual

3.1 Unstow config actual (si existe)
cd ~/dotfiles
stow -D nvim 2>/dev/null || true

3.2 Verificar que se eliminé symlink

ls -la ~/.config/ | grep nvim
No deberila aparecer nada

14.6.4 Paso 4: Instalar Nueva Config

4.1 Stow nueva config
stow nvim-lazy

4.2 Verificar symlink

ls -la ~/.config/nvim
lrwxrwxrwx - achalmaedison nvim ->

14.6.5 Paso 5: Probar

5.1 Abrir Neovim
nvim

LazyVim se instalard automaticamente
Probar todas las features

5.2 Usar por varios dias
Evaluar si te gusta

14.6.6 Paso 6: Decidir Qué Hacer

77

../../dotfiles/nvim-lazy/.config/nvim

Opcion A: Mantener nueva config (si te gusto):

cd ~/dotfiles

1. Eliminar config vieja
rm -rf nvim/ # 0 hacer backup

2. Renombrar nueva
mv nvim-lazy nvim

3. Restow
stow -R nvim

4. Commit
git add .

GESTION DE DOTFILES CON GNU STOW 78

git commit -m "refactor(nvim): Switch to LazyVim configuration"
5. Merge a main
git checkout main

git merge experiment/nvim-lazyvim

6. Push
git push origin main

7. Eliminar branch experimental
git branch -d experiment/nvim-lazyvim

Opcion B: Volver a config anterior (si no te gusto):

cd ~/dotfiles

1. Checkout a main
git checkout main

2. Unstow experimental
stow -D nvim-lazy

3. Restow original
stow nvim

4. Eliminar paquete experimental
rm -rf nvim-lazy/

5. Eliminar branch
git branch -D experiment/nvim-lazyvim

Opciéon C: Mantener ambas (para casos especificos):

Tener dos configs de Neovim:

~/dotfiles/
nvim/ # Config principal
nvim-lazy/ # Config alternativa

Alias en shell para cambiar:
alias nvim-main='stow -D nvim-lazy && stow nvim && nvim'
alias nvim-lazy='stow -D nvim && stow nvim-lazy && nvim'

14.7 Caso 7: Sincronizar Miiltiples Maquinas en Tiempo Real

Escenario: Trabajas en 3 mdquinas (desktop, laptop, servidor) y quieres mantener dot-
files sincronizados.

GESTION DE DOTFILES CON GNU STOW

14.7.1 Configuracién Inicial (Una Vez)

En cada maquina:

1. Clonar dotfiles
cd ~
git clone https://github.com/achalmaedison/.dotfiles.git dotfiles

2. Instalar
cd dotfiles
./install.sh

3. Configurar Git con pull automadtico (opcional)
git config pull.rebase true # Rebase en lugar de merge

14.7.2 Workflow Diario

Maquina A (Desktop) - Hacer Cambios:

1. Editar configs normalmente
nano ~/.zshrc # Edita a través del symlink

2. Commit y push

cd ~/dotfiles

git add shell/.zshrc

git commit -m "chore(shell): Add new alias for docker"
git push origin main

Maquina B (Laptop) - Recibir Cambios:

1. Pull cambios
cd ~/dotfiles
git pull origin main

2. Los symlinks se actualizan autom&ticamente!
cat ~/.zshrc # Ya tiene el cambio

3. Recargar shell
source ~/.zshrc

0

exec zsh

Maquina C (Servidor) - Recibir Cambios:

Mismo proceso

cd ~/dotfiles

git pull origin main
source ~/.zshrc

79

GESTION DE DOTFILES CON GNU STOW

14.7.3 Automatizar con Cron (Opcional)

Crear script de sync

cat > ~/dotfiles/sync.sh << 'EOF'
#!/bin/bash

cd "$HOME/dotfiles"

Pull cambios silenciosamente
git pull origin main --quiet

Log
echo "$(date): Dotfiles sincronizados" >> ~/dotfiles/sync.log
EQF

chmod +x ~/dotfiles/sync.sh

Agregar a crontab (sync cada hora)
crontab -e

Agregar linea:
0 * x * x $HOME/dotfiles/sync.sh

14.7.4 Manejar Conflictos Automaticamente

Script més robusto

cat > ~/dotfiles/sync.sh << 'EOF'
#!/bin/bash

cd "$HOME/dotfiles"

Stash cambios locales si existen
git stash

Pull
git pull origin main --quiet

Reapply stash
git stash pop

Si hay conflictos, notificar
if [$7 -ne 0]; then
notify-send "Dotfiles" "Conflicto detectado, revisar manualmente"
fi
EQF

14.7.5 Usar Git Hooks (Avanzado)

80

GESTION DE DOTFILES CON GNU STOW 81

Pre-commit hook para validar antes de commit
cat > ~/dotfiles/.git/hooks/pre-commit << 'EQOF'
#!/bin/bash

Verificar que no hay datos sensibles
if git diff --cached | grep -i "password\|secret\|token"; then
echo "ERROR: Posible dato sensible detectado!"

exit 1
fi
exit O
EQF

chmod +x ~/dotfiles/.git/hooks/pre-commit

14.8 Caso 8: Compartir Dotfiles con Equipo/Lab

Escenario: Trabajas en un lab con multiples usuarios y quieren compartir configuracio-
nes base.

14.8.1 Paso 1: Crear Repo de Equipo
En GitHub, crear repo:
Nombre: lab-dotfiles

Acceso: Privado/Piblico segin necesidad

Clonar
git clone https://github.com/lab/.lab-dotfiles.git ~/lab-dotfiles

14.8.2 Paso 2: Estructura Multi-Usuario

cd ~/lab-dotfiles

Crear estructura
mkdir -p {common,users}

Common: Configs compartidas
mkdir -p common/{git,shell,terminal}

Users: Configs personales
mkdir -p users/{alice,bob,carlos}

14.8.3 Paso 3: Setup Comiin

GESTION DE DOTFILES CON GNU STOW

Git config compartido (sin user.name/email)
cat > common/git/.gitconfig << 'EQOF'
[core]

editor = nano

autocrlf = input

[alias]
st = status
co = checkout
br = branch
[push]

default = simple
EQF

Shell coman
cat > common/shell/.zshrc << 'EOF'
Shared Zsh configuration for Lab

Common aliases
alias 11='ls -lah'
alias ..='cd ..'

Lab-specific paths
export LAB_DATA="/data/lab"
export LAB_TOOLS="/opt/lab-tools"

Source user-specific config if exists

[-f ~/.zshrc.local] && source ~/.zshrc.local
EQF

14.8.4 Paso 4: Configs Personales

Usuario Alice
cat > users/alice/.zshrc.local << 'EQOF'
Alice's personal config

export EDITOR=nvim

alias mydata='cd /data/lab/alice’
EQF

Usuario Bob
cat > users/bob/.zshrc.local << 'EQF'

Bob's personal config

export EDITOR=vim

82

GESTION DE DOTFILES CON GNU STOW

alias mydata='cd /data/lab/bob'
EQF

14.8.5 Paso 5: Script de Instalaciéon

cat > install-lab.sh << 'EQOF'
#!/bin/bash

USERNAME="§1"

if [-z "$USERNAME"]; then
echo "Uso: $0 <username>"
echo "Ejemplo: $0 alice"
exit 1

fi

DOTFILES="$HOME/lab-dotfiles"

Instalar comin
cd "$DOTFILES/common"
stow git shell terminal

Instalar personal del usuario
if [-d "$DOTFILES/users/$USERNAME"]; then
cd "$DOTFILES/users/$USERNAME"
stow .
echo " Configs de $USERNAME instaladas"
else
echo " No hay configs personales para $USERNAME"
fi

echo " Instalacién completa para $USERNAME"
EQF

chmod +x install-lab.sh

14.8.6 Paso 6: Cada Usuario Instala

Usuario Alice:
cd ~/lab-dotfiles
./install-lab.sh alice

Usuario Bob:
cd ~/lab-dotfiles
./install-lab.sh bob

83

GESTION DE DOTFILES CON GNU STOW 84

14.8.7 Paso 7: Actualizar Configs Compartidas

Cualquier usuario puede actualizar common/

1. Modificar
nano ~/lab-dotfiles/common/shell/.zshrc

2. Commit

cd ~/lab-dotfiles

git add common/shell/.zshrc

git commit -m "feat(shell): Add lab-wide utility function"

3. Push
git push origin main

4. Otros usuarios pull
git pull origin main
Cambios se aplican automdticamente via symlinks

14.8.8 Paso 8: Usuarios Agregan Sus Configs

Bob quiere agregar su config de Neovim

1. Crear su directorio personal
mkdir -p ~/lab-dotfiles/users/bob/.config

2. Copiar config
cp -r ~/.config/nvim ~/lab-dotfiles/users/bob/.config/

3. Commit (solo su carpeta)

cd ~/lab-dotfiles

git add users/bob/.config/nvim

git commit -m "feat(bob): Add Neovim configuration"
git push

Otros usuarios no se afectan

14.9 Caso 9: Migrar de Sistema Manual a Stow

Escenario: Tienes dotfiles en GitHub pero SIN Stow (todos en raiz del repo). Quieres
migrar a Stow.

14.9.1 Estado Inicial

Tu repo actual (sin Stow):
~/dotfiles/
.gitconfig

GESTION DE DOTFILES CON GNU STOW

.zshrc

.zshenv

nvim/
init.lua

konsolerc

settings. json

Estructura plana, dificil de gestionar

14.9.2 Paso 1: Backup Completo

1. Backup de dotfiles actuales

cp -r ~/dotfiles ~/dotfiles-backup-$(date +3,Y/m%d)

2. Backup de HOME

mkdir -p ~/home-backup

cp ~/.zshrc ~/home-backup/

cp ~/.gitconfig ~/home-backup/
etc...

14.9.3 Paso 2: Crear Nueva Estructura

cd ~/dotfiles

Crear directorios de paquetes
mkdir -p git shell nvim terminal vscode

14.9.4 Paso 3: Reorganizar Archivos

cd ~/dotfiles

Git
mv .gitconfig git/

Shell
mv .zshrc shell/
mv .zshenv shell/

Neovim (crear estructura correcta)
mkdir -p nvim/.config
mv nvim/ nvim/.config/nvim/

Terminal
mkdir -p terminal/.config
mv konsolerc terminal/.config/

85

GESTION DE DOTFILES CON GNU STOW

VSCode
mkdir -p vscode/.config/Code/User
mv settings.json vscode/.config/Code/User/

14.9.5 Paso 4: Verificar Nueva Estructura

Deberia verse asi:
tree -L 3 ~/dotfiles/

~/dotfiles/

git/

.gitconfig
shell/

.zshrc

.zshenv

nvim/

.config/
nvim/
terminal/

.config/

konsolerc

vscode/

.config/

Code/

User/

settings. json

14.9.6 Paso 5: Eliminar Symlinks/Archivos Viejos de HOME

Eliminar configs de HOME (los vamos a recrear con Stow)
rm ~/.gitconfig

rm ~/.zshrc

rm ~/.zshenv

rm -rf ~/.config/nvim

rm ~/.config/konsolerc

rm ~/.config/Code/User/settings.json

14.9.7 Paso 6: Instalar con Stow

cd ~/dotfiles

Dry run primero
stow —nv git shell nvim terminal vscode

Si todo 0K, instalar
stow git shell nvim terminal vscode

86

GESTION DE DOTFILES CON GNU STOW

Verificar

1ls -la ~/.gitconfig
1ls -la ~/.zshrc

ls -la ~/.config/nvim

14.9.8 Paso 7: Commit Nueva Estructura

cd ~/dotfiles

Stage todo
git add -A

Ver cambios
git status

Commit
git commit -m "refactor: Migrate to GNU Stow structure

BREAKING CHANGE: Repository structure changed to use Stow
- Organized configs into packages (git, shell, nvim, etc.)
- Each package replicates HOME directory structure

- Use 'stow <package>' to install

Migration guide:

1. stow -D * (if already installed)

2. stow git shell nvim terminal vscode"

Push
git push origin main

14.9.9 Paso 8: Actualizar README

cat > README.md << 'EQF'
Dotfiles (Stow-managed)

Personal configurations managed with GNU Stow.

Structure

~ s

~/dotfiles/
git/ # Git config
shell/ # Zsh
nvim/ # Neovim

terminal/ # Konsole

GESTION DE DOTFILES CON GNU STOW

vscode/ # VSCode

~ s

Installation

" “bash
Install Stow
sudo pacman -S stow

Clone

git clone https://github.com/user/dotfiles.git ~/dotfiles

Install all
cd ~/dotfiles
stow */

Or selective
stow git shell nvim

~ s

Update

““bash

cd ~/dotfiles
git pull

stow -R */

~ s

EQF

git add README.md
git commit -m "docs: Update README for Stow"
git push

14.9.10 Paso 9: Crear Scripts

install.sh

cat > install.sh << 'EOF'
#!/bin/bash

cd "$HOME/dotfiles"

stow git shell nvim terminal vscode
echo " Dotfiles installed"

EOF

chmod +x install.sh
git add install.sh
git commit -m "chore: Add install script"

88

GESTION DE DOTFILES CON GNU STOW 89

git push

14.9.11 Paso 10: Limpiar Historial de Git (Opcional)

Si tu repo era muy grande con historia antigua,
puedes limpiarlo:

cd ~/dotfiles

Crear orphan branch
git checkout --orphan latest_branch

Add all files
git add -A

Commit
git commit -m "refactor: Fresh start with Stow structure"

Delete main
git branch -D main

Rename current branch to main
git branch -m main

Force push
git push -f origin main

14.10 Caso 10: Setup para Desarrollo Multi-Proyecto

Escenario: Trabajas en multiples proyectos (Python, Web, Latex) y quieres configs es-
pecificas por proyecto.

14.10.1 Estructura de Dotfiles

~/dotfiles/

common/ # ComGn a todo
git/
shell/

python-dev/ # Python development
nvim/
vscode/

web-dev/ # Web development
nvim/
vscode/

latex-writing/ # Academic writing
nvim/
texstudio/

GESTION DE DOTFILES CON GNU STOW

14.10.2 Paso 1: Crear Estructura

cd ~/dotfiles

Comin
mkdir -p common/{git,shell}

Python dev
mkdir -p python-dev/{nvim,vscode}

Web dev
mkdir -p web-dev/{nvim,vscode}

LaTeX
mkdir -p latex-writing/{nvim,texstudio}

14.10.3 Paso 2: Configs Comunes

Git (igual para todos)
cat > common/git/.gitconfig << 'EQOF'
[user]

name = Edison Achalma

email = achalmaedison@gmail.com

[core]
editor = nvim
EQF

Shell base
cat > common/shell/.zshrc << 'EQOF'
Common shell config

Aliases
alias gs='git status'
alias 11='ls -lah'

Load project—-specific config
[-f ~/.zshrc.project] && source ~/.zshrc.project
EQF

14.10.4 Paso 3: Configs Especificas por Proyecto
Python Development:
Neovim para Python

cat > python-dev/nvim/.config/nvim/init.lua << 'EQF'
—-- Python-focused Neovim config

90

GESTION DE DOTFILES CON GNU STOW 91

-- LSP
require('lspconfig') .pyright.setup{}

—-- Python-specific keymaps
vim.keymap.set('n', '<leader>r', ':!python %<CR>')
EOF

VSCode para Python

cat > python-dev/vscode/.config/Code/User/settings.json << 'EOF'

{
"python.linting.enabled": true,
"python.linting.pylintEnabled": true,
"python.formatting.provider": "black"

3

EOF

Shell additions para Python
cat > python-dev/shell/.zshrc.project << 'EOF'
Python dev environment

export PYTHONPATH="$HOME/projects/python:$PYTHONPATH"

alias pytest='python -m pytest'
alias venv='python -m venv venv && source venv/bin/activate'
EQF

Web Development:

Neovim para Web
cat > web-dev/nvim/.config/nvim/init.lua << 'EOF'
-- Web-focused Neovim config

-- LSP for JS/TS
require('lspconfig') .tsserver.setup{}

-- Live server
vim.keymap.set('n', '<leader>l', ':!live-server .<CR>')
0l

VSCode para Web
cat > web-dev/vscode/.config/Code/User/settings.json << 'EQOF'
{

"emmet .includeLanguages": {

"javascript": "javascriptreact"

I

"prettier.enable": true,

"editor.formatOnSave": true

GESTION DE DOTFILES CON GNU STOW

+
EOF

14.10.5 Paso 4: Scripts de Activacion

Script para activar proyecto Python
cat > ~/dotfiles/activate-python.sh << 'EQOF'
#!/bin/bash

echo " Activando entorno Python..."

cd ~/dotfiles

Unstow otros proyectos

stow -D web-dev/nvim 2>/dev/null || true

stow -D latex-writing/nvim 2>/dev/null || true

Stow comhn
stow common/*

Stow Python
stow python-dev/*

Copiar project-specific shell config
cp python-dev/shell/.zshrc.project ~/.zshrc.project

echo " Entorno Python activado"
EOF

chmod +x ~/dotfiles/activate-python.sh

Script para activar proyecto Web
cat > ~/dotfiles/activate-web.sh << 'EQF'
#!/bin/bash

echo " Activando entorno Web..."

cd ~/dotfiles

Unstow otros

stow -D python-dev/nvim 2>/dev/null || true

stow -D latex-writing/nvim 2>/dev/null || true

Stow comin
stow common/*

Stow Web

92

GESTION DE DOTFILES CON GNU STOW

stow web-dev/*

Shell config
cp web-dev/shell/.zshrc.project ~/.zshrc.project

echo " Entorno Web activado"
EQF

chmod +x ~/dotfiles/activate-web.sh

14.10.6 Paso 5: Uso

Trabajar en proyecto Python
~/dotfiles/activate-python.sh

cd ~/projects/python/my-project
nvim # Abre con config de Python

Cambiar a proyecto Web
~/dotfiles/activate-web.sh

cd ~/projects/web/my-app

nvim # Abre con config de Web

14.10.7 Paso 6: Automatizar con Direnv (Avanzado)

Instalar direnv
sudo pacman —-S direnv

En cada proyecto, crear .envrc

cd ~/projects/python/my-project

cat > .envrc << 'EQF'

#!/bin/bash

Activar entorno Python autom&ticamente
source "$HOME/dotfiles/activate-python.sh"
EQF

direnv allow

Ahora al entrar al directorio, se activa automaticamente

15 Mi Repositorio .dotfiles
15.1 Mi Estructura Actual

~/dotfiles/
git/
.gitconfig

93

GESTION DE DOTFILES CON GNU STOW

kde/
.config/
kdeglobals
dolphinrc

shell/
.zshrc
starship.toml
terminal/
.config/
konsolerc
vscode/
.config/
settings. json
keybindings. json
zotero/
.zotero/. ..
obsidian/
Documents/thoughts/.obsidian/
(mas paquetes)

15.2 Implementacién de Stow
15.2.1 Scriptinstall.sh

Mi install. sh actual debe usar Stow. Aqui estd mi version mejorada:

#!/bin/bash
~/dotfiles/install.sh

set -e

DOTFILES="$HOME/dotfiles"
BACKUP_DIR="$HOME/dotfiles-backup-$(date +%Y/m%d-%H/M%S)"

Colores
RED='\033[0;31m'
GREEN="'\033[0;32m'
YELLOW='\033[1;33m'
NC='\033[0m' # No Color

Funciones
log_info() {

echo -e "${GREEN}[INFO]${NC} $1"
}

log warn() {
echo -e "${YELLOW} [WARN]${NC} $1"

GESTION DE DOTFILES CON GNU STOW

log_error() {
echo -e "${RED}[ERROR]${NC} $1"
3

Verificar que Stow estd instalado
if ! command -v stow &> /dev/null; then
log_error "Stow no estd instalado"
log _info "Instalando stow..."
sudo apt update && sudo apt install -y stow
fi

Funcidén para hacer backup
backup_if exists() {
local file="@§1"
if [-e "$file"] && [! -L "$file"]; then
mkdir -p "$BACKUP_DIR"
cp -r "$file" "$BACKUP_DIR/"
log_warn "Backup: $file -> $BACKUP_DIR/"
fi

Funcidén para stow paquete
stow_package() {
local package="8$1"

log_info "Stowing $package..."

Dry run primero
if stow -nv "$package" 2>&1 | grep -q "WARNING"; then
log_warn "Conflicto detectado para $package"
read -p ";Hacer backup y continuar? [y/N] " -n 1 -r
echo
if [[$REPLY =~ ~[Yy]$ 1]; then
Hacer backup de archivos conflictivos
(aqui necesitarias ldgica mas sofisticada)
stow "$package"
else
log_error "Saltando $package"
return 1
fi
else
stow "$package"
log_info " $package instalado"
fi

GESTION DE DOTFILES CON GNU STOW

Cambiar a dotfiles directory
cd "$DOTFILES" || exit 1

Lista de paquetes a instalar
PACKAGES=(

ngith

"shell"

"terminal"

"kde"

"vscode"

"nvim"

"kitty"

... mas paquetes

Opcidén para instalar todo o selectivo
if ["$1" == "all"]; then
PACKAGES=($(1s -d */ | sed 's#/#'))
log_info "Instalando TODOS los paquetes"
elif [$# -gt O]; then
PACKAGES=("$@")

log_info "Instalando paquetes especificados: ${PACKAGES[x]}"

fi

Instalar paquetes

for package in "${PACKAGES[@]}"; do
stow_package "$package" || true

done

log_info "Instalacidén completa!"
if [-d "$BACKUP_DIR"]; then

log_info "Backups guardados en: $BACKUP_DIR"
fi

Uso:

Instalar paquetes especificos
./install.sh git shell terminal

Instalar todo
./install.sh all

Ver qué haria sin hacer cambios
(modificar script para agregar -n flag)

96

GESTION DE DOTFILES CON GNU STOW

15.2.2 Script para Desinstalar

#!/bin/bash
~/dotfiles/uninstall.sh

DOTFILES="$HOME/dotfiles"
cd "$DOTFILES" || exit 1
if [$# -eq O]; then

echo "Uso: $0 <paquetel> [paquete2] ..."
echo "0O: $0 all"

exit 1
fi
if ["$1" == "all"]; then
PACKAGES=($(1s -d */ | sed 's#/#'))
else
PACKAGES=("$@")
fi

for package in "${PACKAGES[@]}"; do
echo "Unstowing $package..."
stow -D "$package"
echo " $package desinstalado"
done

15.2.3 Reorganizar Paquetes Problematicos

Zotero: Ubicacion no estandar

Actual:
zotero/
.zotero/zotero/256vfdng5.default/
prefs.js

Problema: .zotero estd en HOME pero tiene subdirectorios profundos

Solucidén 1: Usar como esta (funciona)
stow zotero
Resultado: ~/.zotero/... - dotfiles/zotero/.zotero/...

Solucidén 2: Si solo quieres prefs.js, simplificar:
zotero/
.zotero/
zotero/
26vfdng5.default/
prefs.js

97

GESTION DE DOTFILES CON GNU STOW

Obsidian: Ruta especifica

Actual:
obsidian/
Documents/thoughts/.obsidian/

Problema: No estd en .config sino en Documents

Solucidn: Esta bien asi, Stow lo maneja
stow obsidian

Resultado: ~/Documents/thoughts/.obsidian - ...

15.2.4 .stowrc

Crear ~/dotfiles/.stowrc:

~/dotfiles/.stowrc

Target es siempre HOME
--target=$HOME

Ignorar archivos comunes
-—ignore='.git'
--ignore='README. *x'
-—ignore='LICENSE. *'
--ignore='.*.swp'
-—ignore="'.x*~'
--ignore='install.sh'
--ignore='uninstall.sh'
-—-ignore='.stowrc'

Con esto, no necesitas especificar -t ~ cada vez.
15.2.5 .stow-local-ignore por Paquete

Para vscode:

~/dotfiles/vscode/.stow-local-ignore

No stow extensiones (solo configuracién)
~/\.config/Code/CachedData/
~/\.config/Code/logs/
~/\.config/Code/User/workspaceStorage/

Para kde:

~/dotfiles/kde/.stow-local-ignore

Archivos de sesidén y cache
~/\.config/session/
~/\.cache/

98

GESTION DE DOTFILES CON GNU STOW

~/

Hi
“/\.
“/\.

Para shell:

dotfiles/shell/.stow-local-ignore

storia de shells (puede tener info sensible)
zsh_history
bash_history

Archivos compilados

\.zc

15.2.

ompdump

6 Script de Verificacion

#!/bin/bash

~/

Ve

DOTF

echo
echo

Cd "

for

dotfiles/check-stow.sh
rificar qué esta stowed
ILES="$HOME/dotfiles"

"Paquetes stowed:"
n n

$DOTFILES" || exit 1

package in */; do
package=${package’/}

Encontrar primer archivo del paquete
first file=$(find "$package" -type f | head -1)

if [-z "$first_file"]; then
continue
fi

Convertir a path en HOME
home_path="$HOME/${first_file#$package/}"

if [-L "$home_path"]; then
target=$(readlink "$home path")

if [["$target" == *"$DOTFILES/$package"*]]; then
echo " $package"
else
echo " $package (symlink apunta a otro lugar)"
fi

else
echo " $package (no stowed)"

99

GESTION DE DOTFILES CON GNU STOW

fi
done

15.2.7 Actualizar .gitignore

~/dotfiles/.gitignore

Backups
K~

* . bak
*.0ld
*.orig
1)

Datos sensibles
shell/.zsh_history
shell/.bash_history
.netrc

.authinfo

Cache y temporales
**/ . cache/

xx/ _pycache__/
xx/node_modules/

Logs
x%/.log

Sistema
.DS_Store
Thumbs .db

Archivos de Stow
.stow

Zotero database (demasiado grande)

zotero/.zotero/zotero/*/zotero.sqlitex

VSCode workspace storage

vscode/ .config/Code/User/workspaceStorage/

15.2.8 Comandos Utiles

Navegar a dotfiles
cd ~/dotfiles

Instalar todo (primera vez)

100

GESTION DE DOTFILES CON GNU STOW

./install.sh all

Instalar paquetes esenciales
./install.sh git shell terminal kde

Verificar qué estd instalado
./check-stow.sh

Actualizar después de pull
git pull
stow -R */ # Restow todo

Desinstalar temporalmente para pruebas
stow -D vscode

hacer pruebas...

stow vscode # Reinstalar

Agregar nuevo paquete
mkdir new-app

crear estructura...

stow new-app

git add new-app/

git commit -m "Add new-app"

16 Workflows

16.1 Workflow 1: Configuracion Inicial

Paso 1: Crear estructura
mkdir -p ~/dotfiles

cd ~/dotfiles

git init

Paso 2: Crear paquetes
mkdir -p zsh nvim git

Paso 3: Mover configs existentes
mv ~/.zshrc zsh/

mv ~/.config/nvim nvim/.config/
mv ~/.gitconfig git/

Paso 4: Stow
stow zsh nvim git

Paso 5: Verificar
ls -la ~/.zshrc # debe ser symlink

101

GESTION DE DOTFILES CON GNU STOW

Paso 6: Git

git add .

git commit -m "Initial dotfiles"

git remote add origin git@github.com:user/dotfiles.git
git push -u origin main

16.2 Workflow 2: Dia a Dia

Editar configuracién (desde cualquier lugar)
nvim ~/.config/nvim/init.lua # Edita a través del symlink

Commit cambios

cd ~/dotfiles

git add nvim/

git commit -m "Update nvim config: add new plugin"
git push

En otra m&quina

cd ~/dotfiles

git pull

Los cambios se reflejan automaticamente (symlinks)

16.3 Workflow 3: Nueva Maquina

Clonar
git clone https://github.com/user/dotfiles.git ~/dotfiles

Instalar Stow
sudo apt install stow

Backup existentes (precaucién)
mkdir ~/backup
cp ~/.zshrc ~/backup/ 2>/dev/null || true

Stow
cd ~/dotfiles
stow *x/

Verificar
1s -la ~/ | grep '\->'

Instalar dependencias de apps
(nvim plugins, zsh plugins, etc)

102

GESTION DE DOTFILES CON GNU STOW

16.4 Workflow 4: Experimentar

Crear branch de experimento
cd ~/dotfiles
git checkout -b experiment-new-nvim

Modificar libremente
nvim nvim/.config/nvim/init.lua

Restow para aplicar
stow -R nvim

Probar. ..
Si funciona:
git checkout main

git merge experiment-new-nvim

Si no funciona:
git checkout main

stow -R nvim # Vuelve a main automaticamente

16.5 Workflow 5: Actualizacion Limpia

Pull cambios
cd ~/dotfiles
git pull origin main

Verificar qué cambid
git log -p ——-since="1 week ago"

Desinstalar y reinstalar (limpia symlinks obsoletos)

stow -D nvim
stow nvim

0 usar restow
stow -R nvim

Verificar que funciona
nvim --version

17 Best Practices

17.1 Organizacion de Paquetes

DO:

103

GESTION DE DOTFILES CON GNU STOW 104

Un paquete por aplicacién
~/dotfiles/

nvim/

zsh/

git/

Replicar estructura de HOME exactamente
nvim/
.config/
nvim/
init.lua

DON’T:

Maltiples aplicaciones en un paquete
~/dotfiles/
configs/
.config/nvim/
.config/kitty/
.zshrc

Estructura diferente a HOME
nvim/
init.lua # Falta .config/nvim/

17.2 Uso de Ignore Lists
DO:

Ignorar archivos sensibles
.stow-global-ignore
*x%/ . history

x/.ssh/id_

.netrc

Ignorar cache por paquete

nvim/.stow-local-ignore

~/\.config/nvim/plugin/packer_compiled\.lua
DON’T:

Commit archivos sensibles sin ignorar
git add ~/.ssh/id_rsa # ;NUNCA!

17.3 Commits y Mensajes
DO:

GESTION DE DOTFILES CON GNU STOW

Commits descriptivos y atémicos
git commit -m "feat(nvim): Add LSP configuration for Rust"
git commit -m "fix(zsh): Correct path to starship prompt"

Un cambio légico por commit
DON’T:

Commits genéricos
git commit -m "Update stuff"
git commit -m "Changes"

Multiples cambios no relacionados en un commit

17.4 Testing Antes de Commit
DO:

Siempre test antes de commit
stow -D nvim # Desinstalar
stow nvim # Reinstalar

Verificar que funciona
git commit

Dry run en nueva maquina
stow -nv */

DON’T:

Commit sin probar
Cambios - commit - push - Rompe en otra maquina

17.5 Backup Siempre
DO:

Backup antes de stow en nueva maquina
mkdir ~/backup
cp -r ~/.config/nvim ~/backup/

Luego stow
stow nvim

DON’T:

Stow directamente sin backup
stow nvim # Puede sobrescribir configs importantes

105

GESTION DE DOTFILES CON GNU STOW

17.6 Documentacion

DO:

README.md completo
- Qué paquetes hay
- Coémo instalar

— Dependencias

- Comandos dtiles

Comentarios en configs

nvim/init.lua

-- LSP configuration

-- Requires: nvim-lspconfig plugin

DON’T:

README vacio o sin info
Configs sin comentarios

17.7 Estructura Consistente

DO:

Misma estructura en todos los paquetes

package/
.stow-local-ignore
README . md

(archivos que van en HOME)

DON’T:

Estructura inconsistente entre paquetes

17.8 Versionado
DO:

Tags para versiones estables

git tag -a v1.0.0 -m "Stable nvim config"

Branches para experimentar
git checkout -b experiment/new-theme

DON’T:

Todo en main sin tags
Experimentar directamente en main

106

GESTION DE DOTFILES CON GNU STOW 107

18 Alternativas a Stow
18.1 Yadm (Yet Another Dotfiles Manager)

Ventajas:

* @it nativo, no symlinks
* Encriptacién built-in

» Templates con Jinja2

* Bootstrap scripts

Desventajas:

* Menos control granular
* Todo en un repo

Instalar
sudo apt install yadm

Usar

yadm init

yadm add ~/.zshrc

yadm commit -m "Add zshrc"

18.2 Chezmoi

Ventajas:

Templates

Secrets management
Cross-platform
Estado vs archivos

Desventajas:

Mis complejo
Curva de aprendizaje

Instalar
sh -c "$(curl -fsLS get.chezmoi.io)"

Usar
chezmoi init
chezmoi add ~/.zshrc

GESTION DE DOTFILES CON GNU STOW

18.3 Dotbot

Ventajas:

* Basado en configuracion YAML
* Bootstrapping automético
* Plugins

Desventajas:

* Otra herramienta que aprender
* Menos flexibilidad que Stow

install.conf.yaml

- link:
~/.zshrc: zshrc
~/.config/nvim: nvim

18.4 Bare Git Repository

Ventajas:

¢ Solo Git, no tools extra
¢ Total control

Desventajas:

* M4s manual
* Conflictos con .gitignore

Setup
git init --bare $HOME/.dotfiles

108

alias config='/usr/bin/git --git-dir=$HOME/.dotfiles/ --work-tree=$HOME'

config config --local status.showUntrackedFiles no
Usar

config add .zshrc
config commit -m "Add zshrc"

18.5 Comparacion

Repositorio
Caracteristica GNU Stow yadm chezmoi dotbot Git bare
Simplicidad Muy alta Alta Media Alta Media
Flexibilidad Muy alta Media Muy alta Media Muy alta
Soporte para No Parcial Completo No No

plantillas (Jinja2)

GESTION DE DOTFILES CON GNU STOW 109

Repositorio
Caracteristica GNU Stow yadm chezmoi dotbot Git bare
Manejo de No Bueno Excelente No No
secretos (integrado)
Facilidad de Muy Muy Muy sencilla Muy Sin instalacién
instalacion sencilla sencilla sencilla adicional
Tamafio de la Grande Mediana Grande Pequena N/A
comunidad (herramienta
nativa)
Curva de Baja Baja Media-alta Baja Media
aprendizaje
Uso de enlaces Si No Si (opcional) Si No
simbdlicos (principal)
Soporte Excelente ~ Bueno Excelente Bueno Excelente
multiplataforma

Recomendacion: Stow es ideal si quieres:

* Simplicidad

* Control total

* Organizacién por paquetes
* Solo symlinks, sin magia

19 Conclusion

La gestion de dotfiles es una practica esencial para optimizar el entorno de desarrollo
y asegurar la persistencia de las configuraciones personalizadas. GNU Stow, en particular, se
destaca por su simplicidad y eficacia al manejar enlaces simbdlicos, especialmente cuando se
combina con Git para el versionado y la sincronizacién. Permite una modularidad excelente y
una replicacion rapida de entornos.

Si bien existen alternativas mds avanzadas como Chezmoi o YADM (que ofrecen
funciones adicionales como plantillas y cifrado de secretos) o soluciones declarativas como
NixOS/Home-Manager, Stow sigue siendo una opcién robusta y preferida por muchos por su
enfoque directo y la curva de aprendizaje minima. La clave es elegir la herramienta que mejor
se adapte a las necesidades y al nivel de complejidad deseado, siempre priorizando la seguridad
de la informacién sensible.

19.1 Comandos Esenciales

Instalar
stow paquete

Desinstalar
stow -D paquete

Reinstalar
stow —-R paquete

GESTION DE DOTFILES CON GNU STOW 110

Simular
stow —nv paquete

Ver qué hace
stow -vv paquete

Ignorar archivos
stow ——ignore='patrdén' paquete

Especificar directorios
stow -d ~/dotfiles -t ~ paquete

19.2 Recursos Adicionales

Documentacion:

* Manual oficial: man stow
* Info pages: info stow
* Web: https://www.gnu.org/software/stow/

Comunidad:

* r/unixporn (ejemplos de dotfiles)
* GitHub topic: dotfiles
* YouTube: “dotfiles management”

Ejemplos de dotfiles con Stow:

* https://github.com/search?q=stow+dotfiles
* https://dotfiles.github.io/

20 Publicaciones Similares

Si te intereso este articulo, te recomendamos que explores otros blogs y recursos rela-
cionados que pueden ampliar tus conocimientos. Aqui te dejo algunas sugerencias:

I8 Comandos De Informacion Windows
B Adb
B Limpieza Y Optimizacion De Pc
IS Usando Apk En Windown 11
B§ Gestionar Versiones De Jdk En Kubuntu
IS [nstalar Tor Browser
IS Crear Enlaces Duros O Hard Link En Linux
IS Comandos Vim
9. B§ Guia De Git Y Github
10. B8 00 Primeros Pasos En Linux
11. I§01 Introduccion Linux
12. I§ 02 Distribuciones Linux
13. I§ 03 Instalacion Linux
14. 1§04 Administracion Particiones Volumenes

A

https://chaska-x.netlify.app/operating-system/2017-05-21-comandos-de-informacion-windows/index.pdf
https://chaska-x.netlify.app/operating-system/2017-05-21-comandos-de-informacion-windows
https://chaska-x.netlify.app/operating-system/2019-06-19-adb/index.pdf
https://chaska-x.netlify.app/operating-system/2019-06-19-adb
https://chaska-x.netlify.app/operating-system/2021-08-17-limpieza-y-optimizacion-de-pc/index.pdf
https://chaska-x.netlify.app/operating-system/2021-08-17-limpieza-y-optimizacion-de-pc
https://chaska-x.netlify.app/operating-system/2021-10-21-usando-apk-en-windown-11/index.pdf
https://chaska-x.netlify.app/operating-system/2021-10-21-usando-apk-en-windown-11
https://chaska-x.netlify.app/operating-system/2022-05-12-gestionar-versiones-de-jdk-en-kubuntu/index.pdf
https://chaska-x.netlify.app/operating-system/2022-05-12-gestionar-versiones-de-jdk-en-kubuntu
https://chaska-x.netlify.app/operating-system/2022-07-21-instalar-tor-browser/index.pdf
https://chaska-x.netlify.app/operating-system/2022-07-21-instalar-tor-browser
https://chaska-x.netlify.app/operating-system/2022-08-14-crear-enlaces-duros-o-hard-link-en-linux/index.pdf
https://chaska-x.netlify.app/operating-system/2022-08-14-crear-enlaces-duros-o-hard-link-en-linux
https://chaska-x.netlify.app/operating-system/2022-09-27-comandos-vim/index.pdf
https://chaska-x.netlify.app/operating-system/2022-09-27-comandos-vim
https://chaska-x.netlify.app/operating-system/2023-02-16-guia-de-git-y-github/index.pdf
https://chaska-x.netlify.app/operating-system/2023-02-16-guia-de-git-y-github
https://chaska-x.netlify.app/operating-system/2023-05-02-00-primeros-pasos-en-linux/index.pdf
https://chaska-x.netlify.app/operating-system/2023-05-02-00-primeros-pasos-en-linux
https://chaska-x.netlify.app/operating-system/2023-06-17-01-introduccion-linux/index.pdf
https://chaska-x.netlify.app/operating-system/2023-06-17-01-introduccion-linux
https://chaska-x.netlify.app/operating-system/2023-06-18-02-distribuciones-linux/index.pdf
https://chaska-x.netlify.app/operating-system/2023-06-18-02-distribuciones-linux
https://chaska-x.netlify.app/operating-system/2023-06-19-03-instalacion-linux/index.pdf
https://chaska-x.netlify.app/operating-system/2023-06-19-03-instalacion-linux
https://chaska-x.netlify.app/operating-system/2023-06-20-04-administracion-particiones-volumenes/index.pdf
https://chaska-x.netlify.app/operating-system/2023-06-20-04-administracion-particiones-volumenes

GESTION DE DOTFILES CON GNU STOW 111

15. 1§ Atajos De Teclado Y Comandos Para Usar Vim
16. B§ Instalando Specitify
17. B8 Gestiona Tus Dotfiles Con Gnu Stow

Esperamos que encuentres estas publicaciones igualmente interesantes y ttiles. jDisfru-
ta de la lectura!

https://chaska-x.netlify.app/operating-system/2023-07-01-atajos-de-teclado-y-comandos-para-usar-vim/index.pdf
https://chaska-x.netlify.app/operating-system/2023-07-01-atajos-de-teclado-y-comandos-para-usar-vim
https://chaska-x.netlify.app/operating-system/2024-07-15-instalando-specitify/index.pdf
https://chaska-x.netlify.app/operating-system/2024-07-15-instalando-specitify
https://chaska-x.netlify.app/operating-system/2025-07-10-gestiona-tus-dotfiles-con-gnu-stow/index.pdf
https://chaska-x.netlify.app/operating-system/2025-07-10-gestiona-tus-dotfiles-con-gnu-stow

	Introduction
	Instalación
	Linux
	macOS
	Desde Fuente
	Verificar Instalación

	Conceptos Fundamentales
	Terminología Clave
	Package (Paquete)
	Target Directory (Directorio Objetivo)
	Stow Directory (Directorio Stow)
	Installation Image (Imagen de Instalación)
	Symlink (Enlace Simbólico)

	Jerarquía de Directorios

	Sintaxis y Comandos
	Sintaxis Básica
	Acciones Principales
	Stow (Instalar)
	Delete (Desinstalar)
	Restow (Reinstalar)

	Opciones de Directorio
	-d / --dir (Stow Directory)
	-t / --target (Target Directory)

	Opciones de Simulación y Verbosidad
	-n / --no / --simulate (Dry Run)
	-v / --verbose (Verbosidad)

	Opciones Avanzadas
	--ignore (Ignorar Archivos)
	--defer (Diferir)
	--override (Sobrescribir)
	--dotfiles (Modo Dotfiles)
	--no-folding (Sin Tree Folding)
	--adopt (Adoptar Archivos)

	Combinando Operaciones

	Estructura de Directorios
	Estructura Recomendada para Dotfiles
	Principios de Organización
	Un Directorio = Un Paquete
	Replicar Estructura del HOME
	Agrupar Lógicamente

	Ejemplos de Estructuras
	Estructura Simple
	Estructura Compleja

	Instalación de Paquetes
	Proceso de Instalación
	Tree Folding (Plegado de Árbol)
	Tree Unfolding (Desplegado de Árbol)

	Instalación Básica
	Instalación con Verificación
	Instalación Selectiva

	Desinstalación de Paquetes
	Proceso de Desinstalación
	Eliminación de Symlinks
	Eliminación de Directorios Vacíos
	Tree Refolding (Re-plegado)

	Desinstalación Básica
	Desinstalación con Verificación
	Desinstalación Parcial

	Reinstalación de Paquetes
	Comando Restow
	Cuándo Usar Restow
	Restow vs Delete + Stow

	Gestión de Dotfiles
	Setup Inicial
	Crear Estructura
	Mover Configuraciones Existentes
	Usar --adopt (Con Precaución)

	Workflow Diario
	Editar Configuraciones
	Agregar Nueva Aplicación
	Sincronizar con Git

	Manejo de Archivos Sensibles
	Estrategia 1: .gitignore
	Estrategia 2: Archivos Template
	Estrategia 3: Encriptación

	Estructura para Múltiples Hosts

	Ignore Lists
	Tipos de Ignore Lists
	Built-in (Predeterminado)
	Global Ignore List
	Package-Local Ignore List

	Sintaxis de Ignore Lists
	Reglas de Matching
	Ejemplos Prácticos

	Precedencia de Ignore Lists
	Opción --ignore en CLI

	Opciones Avanzadas
	Tree Folding Control
	--no-folding

	Adopt Mode
	--adopt

	Defer y Override
	--defer
	--override

	Dotfiles Mode
	--dotfiles

	Multiple Stow Directories

	Integración con Git
	Estructura de Repositorio
	.gitignore Completo
	Commits Best Practices
	Branches Strategy
	Tags para Versiones
	Submodules para Plugins
	GitHub Actions para Validación

	Troubleshooting
	Problema 1: Conflictos al Stow
	Problema 2: Symlinks Rotos
	Problema 3: Directorio No Vacío
	Problema 4: Tree Folding Inesperado
	Problema 5: Permiso Denegado
	Problema 6: Stow No Encuentra Paquete
	Problema 7: .stowrc No Se Aplica
	Problema 8: Stow Muy Lento

	Scripts de Automatización
	Script 1: install.sh Completo
	Script 2: update.sh
	Script 3: check.sh
	Script 4: clean.sh

	Casos de Uso Prácticos
	Caso 1: Crear Dotfiles desde Cero (Primera Vez)
	Paso 1: Preparación
	Paso 2: Crear Estructura de Paquetes
	Paso 3: Migrar Configuraciones Existentes
	Paso 4: Crear Ignore Lists
	Paso 5: Crear .gitignore
	Paso 6: Crear .stowrc
	Paso 7: Instalar con Stow (Primera Vez)
	Paso 8: Verificar que Todo Funciona
	Paso 9: Crear Scripts de Ayuda
	Paso 10: Crear Repositorio en GitHub
	Paso 11: Crear README.md

	Caso 2: Replicar Dotfiles en Laptop Nueva
	Paso 1: Preparar Nueva Máquina
	Paso 2: Backup de Configs Existentes (Precaución)
	Paso 3: Clonar Repositorio
	Paso 4: Revisar y Ajustar (Si Necesario)
	Paso 5: Instalar Dependencias
	Paso 6: Dry Run (Simulación)
	Paso 7: Resolver Conflictos (Si Existen)
	Paso 8: Instalar Todo
	Paso 9: Verificar Instalación
	Paso 10: Configurar Shell
	Paso 11: Instalar Dependencias Específicas
	Paso 12: Probar Todo
	Paso 13: Ajustes Finales

	Caso 3: Actualizar Configs y Sincronizar
	Paso 1: Identificar Cambios
	Paso 2: Probar Cambios Localmente
	Paso 3: Commit Cambios
	Paso 4: Push a GitHub
	Paso 5: Actualizar Otras Máquinas
	Paso 6: Manejar Conflictos (Si Existen)

	Caso 4: Agregar Nueva Aplicación (Kate Editor)
	Paso 1: Usar Kate y Configurar
	Paso 2: Localizar Archivos de Config
	Paso 3: Crear Paquete Kate
	Paso 4: Crear Ignore List para Kate
	Paso 5: Test Stow (Dry Run)
	Paso 6: Hacer Backup y Eliminar Original
	Paso 7: Stow Kate
	Paso 8: Versionar con Git
	Paso 9: Actualizar README
	Paso 10: Actualizar Script de Instalación

	Caso 5: Migrar de Kubuntu a Archcraft
	Paso 1: Evaluar Diferencias
	Paso 2: En Archcraft Nueva
	Paso 3: Crear Branch para Archcraft
	Paso 4: Instalar Paquetes Universales
	Paso 5: Adaptar o Crear Nuevos Paquetes
	Paso 6: No Instalar Paquetes Incompatibles
	Paso 7: Commit Cambios
	Paso 8: Estrategia de Branches
	Paso 9: Script de Instalación por Distro
	Paso 10: Mantener Ambos Sistemas

	Caso 6: Probar Nueva Configuración Sin Romper
	Paso 1: Crear Branch Experimental
	Paso 2: Crear Paquete Alternativo
	Paso 3: Desinstalar Neovim Actual
	Paso 4: Instalar Nueva Config
	Paso 5: Probar
	Paso 6: Decidir Qué Hacer

	Caso 7: Sincronizar Múltiples Máquinas en Tiempo Real
	Configuración Inicial (Una Vez)
	Workflow Diario
	Automatizar con Cron (Opcional)
	Manejar Conflictos Automáticamente
	Usar Git Hooks (Avanzado)

	Caso 8: Compartir Dotfiles con Equipo/Lab
	Paso 1: Crear Repo de Equipo
	Paso 2: Estructura Multi-Usuario
	Paso 3: Setup Común
	Paso 4: Configs Personales
	Paso 5: Script de Instalación
	Paso 6: Cada Usuario Instala
	Paso 7: Actualizar Configs Compartidas
	Paso 8: Usuarios Agregan Sus Configs

	Caso 9: Migrar de Sistema Manual a Stow
	Estado Inicial
	Paso 1: Backup Completo
	Paso 2: Crear Nueva Estructura
	Paso 3: Reorganizar Archivos
	Paso 4: Verificar Nueva Estructura
	Paso 5: Eliminar Symlinks/Archivos Viejos de HOME
	Paso 6: Instalar con Stow
	Paso 7: Commit Nueva Estructura
	Paso 8: Actualizar README
	Paso 9: Crear Scripts
	Paso 10: Limpiar Historial de Git (Opcional)

	Caso 10: Setup para Desarrollo Multi-Proyecto
	Estructura de Dotfiles
	Paso 1: Crear Estructura
	Paso 2: Configs Comunes
	Paso 3: Configs Específicas por Proyecto
	Paso 4: Scripts de Activación
	Paso 5: Uso
	Paso 6: Automatizar con Direnv (Avanzado)

	Mi Repositorio .dotfiles
	Mi Estructura Actual
	Implementación de Stow
	Script install.sh
	Script para Desinstalar
	Reorganizar Paquetes Problemáticos
	.stowrc
	.stow-local-ignore por Paquete
	Script de Verificación
	Actualizar .gitignore
	Comandos Útiles

	Workflows
	Workflow 1: Configuración Inicial
	Workflow 2: Día a Día
	Workflow 3: Nueva Máquina
	Workflow 4: Experimentar
	Workflow 5: Actualización Limpia

	Best Practices
	Organización de Paquetes
	Uso de Ignore Lists
	Commits y Mensajes
	Testing Antes de Commit
	Backup Siempre
	Documentación
	Estructura Consistente
	Versionado

	Alternativas a Stow
	Yadm (Yet Another Dotfiles Manager)
	Chezmoi
	Dotbot
	Bare Git Repository
	Comparación

	Conclusión
	Comandos Esenciales
	Recursos Adicionales

	Publicaciones Similares

