

[Comments]	1

Table of Contents

Guía Completa de Positron IDE

Edison Achalma
Escuela Profesional de Economía, Universidad Nacional de San Cristóbal de Huamanga

Nota de Autores
[bookmark: orchid]Edison Achalma Orcid ID Logo: A green circle with white letters ID https://orcid.org/0000-0001-6996-3364
El autor no tiene conflictos de interés que revelar.
Los roles de autor se clasificaron utilizando la taxonomía de roles de colaborador (CRediT; https://credit.niso.org/) de la siguiente manera: Edison Achalma: conceptualización y redacción
La correspondencia relativa a este artículo debe dirigirse a Edison Achalma, Escuela Profesional de Economía, Universidad Nacional de San Cristóbal de Huamanga, Ayacucho, AYA, Perú, Email: elmer.achalma.09@unsch.edu.pe

Resumen
Positron es un IDE moderno y especializado en ciencia de datos, construido sobre el núcleo open-source de VS Code (Code OSS) y desarrollado por Posit Software. Ofrece soporte nativo para Python y R, consola interactiva avanzada, paneles especializados (Variables, Data Explorer, Plots, Help), integración completa con Quarto y herramientas de asistencia IA. Esta guía completa cubre desde la instalación multiplataforma hasta la configuración avanzada, migración desde VS Code, personalización profunda y mejores prácticas para flujos de trabajo intensivos en análisis de datos, programación estadística y publicación científica reproducible.
Palabras clave: Positron IDE, Ciencia de datos, Python, R, Quarto

Guía Completa de Positron IDE
¿Qué es Positron?
Positron es un IDE moderno y extensible para ciencia de datos construido sobre Code OSS (el núcleo open-source de VS Code). Desarrollado por Posit Software (anteriormente RStudio), está diseñado específicamente para flujos de trabajo de ciencia de datos.
Características Principales:
· Basado en Code OSS: Toda la potencia de VS Code
· Soporte nativo Python y R: Sin necesidad de extensiones externas
· Console interactiva: IPython/IRKernel integrada
· Data Explorer: Visualización de dataframes en vivo
· Variables Pane: Inspección de variables
· Plots Pane: Visualización de gráficos
· Help Pane: Documentación integrada
· Connections Pane: Gestión de bases de datos
· Quarto integrado: Documentos dinámicos
· AI Assistant: Positron Assistant y Databot
· Open VSX: Marketplace de extensiones open-source
Positron vs VS Code vs RStudio
	Característica
	Positron
	VS Code
	RStudio

	Base técnica
	Code OSS
	Propietario + Code OSS
	Propietario (Posit)

	Soporte nativo Python
	Sí
	No (extensión)
	Limitado

	Soporte nativo R
	Sí
	No (extensión)
	Sí (muy optimizado)

	Consola interactiva
	Sí
	No
	Sí

	Panel de datos/variables/plots
	Sí
	No
	Sí

	Soporte Quarto
	Sí (nativo)
	Sí (extensión)
	Sí

	Extensiones
	Open VSX
	VS Marketplace
	Limitadas

	Asistente IA integrado
	Sí
	No (requiere Copilot)
	No

	Multilenguaje
	Sí (R + Python)
	Sí (muy amplio)
	Limitado (foco en R)

	Estabilidad
	Alta
	Muy alta
	Muy alta

	Crashes afectan el IDE
	No
	No
	Sí

· Positron se posiciona como el sucesor natural para flujos de trabajo modernos de ciencia de datos que usan R y Python por igual. Combina lo mejor de RStudio (consola interactiva, panes de datos/plots/variables) con la extensibilidad y modernidad de VS Code.
· VS Code sigue siendo el rey de la versatilidad general, pero requiere mucha configuración para obtener una experiencia fluida en R o Python data science.
· RStudio permanece muy bien mantenido por Posit, con optimizaciones específicas para R que aún no están al 100% en Positron (ej. algunos add-ins, soporte completo de .Rproj en ciertos casos, o features muy nicho como Sweave o ciertos publishing tools). Si tu trabajo es 95–100% R y no necesitas Python, RStudio sigue siendo excelente y estable.
1. Instalación
1.1 Requisitos del Sistema
Mínimos:
· Sistema Operativo: Linux, macOS, Windows
· Espacio en disco: 500 MB
· RAM: 2 GB (4 GB recomendado)
1.2 Linux (Ubuntu/Debian)
Descargar desde el sitio oficial
https://github.com/posit-dev/positron/releases

O instalar desde .deb
sudo dpkg -i positron_*.deb
sudo apt-get install -f # Instalar dependencias
1.3 macOS
Descargar .dmg desde:
https://github.com/posit-dev/positron/releases

O con Homebrew
brew install --cask positron
1.4 Windows
Descargar instalador desde:
https://github.com/posit-dev/positron/releases

Ejecutar positron-setup.exe
1.5 Verificar Instalación
Abrir Positron
positron

O desde línea de comandos
positron --version
1.6 Configurar Comando en Terminal
Linux/macOS:
Añadir a ~/.bashrc o ~/.zshrc
export PATH="$PATH:/path/to/positron/bin"

O crear symlink
sudo ln -s /path/to/positron/bin/positron /usr/local/bin/positron
2. Migración desde VS Code
2.1 Importar Configuración
Automáticamente al primer inicio:
1. Positron te preguntará si quieres importar settings de VS Code
1. Click en “Yes” para importar
1. Revisa los settings importados
1. Guarda los cambios
Manualmente:
Command Palette (Ctrl+Shift+P) → Preferences: Import Settings...
2.2 Diferencias Clave
Extensiones:
· Positron usa Open VSX en lugar de VS Marketplace
· Algunas extensiones pueden no estar disponibles
· Python y R son nativos (no necesitas ms-python.python)
Features Nuevas:
· Console: Reemplaza el terminal para código interactivo
· Variables Pane: Inspección de datos en vivo
· Data Explorer: Visualización de dataframes
· Plots Pane: Gráficos integrados
· Help Pane: Documentación contextual
2.3 Extensiones a Reemplazar
	VS Code
	Positron

	ms-python.python
	Built-in (nativo)

	REditorSupport.r
	Built-in (posit.air-vscode)

	Jupyter
	Built-in

	GitLens
	Instalar desde Open VSX

	Prettier
	Instalar desde Open VSX

3. Configuración Inicial
3.1 Ubicación de Archivos
Linux: ~/.config/Positron/User/settings.json
macOS: ~/Library/Application Support/Positron/User/settings.json
Windows: %APPDATA%\Positron\User\settings.json
3.2 Abrir Settings
GUI:
File → Preferences → Settings (Ctrl+,)
JSON:
Command Palette → Preferences: Open User Settings (JSON)
3.3 Configuración Básica Recomendada
{
 // Editor
 "editor.fontSize": 14,
 "editor.fontFamily": "'JetBrains Mono', 'Fira Code', 'Hack Nerd Font', monospace",
 "editor.fontLigatures": true,
 "editor.lineNumbers": "on",
 "editor.minimap.enabled": false,
 "editor.formatOnSave": true,
 "editor.formatOnPaste": true,
 "editor.cursorBlinking": "smooth",
 "editor.cursorSmoothCaretAnimation": "on",

 // Tema
 "workbench.colorTheme": "Default Positron Dark",
 "workbench.iconTheme": "material-icon-theme",

 // Terminal
 "terminal.integrated.fontFamily": "'Hack Nerd Font', monospace",
 "terminal.integrated.fontSize": 13,
 "terminal.integrated.defaultProfile.linux": "bash",
 "terminal.integrated.copyOnSelection": true,
 "terminal.integrated.cursorBlinking": true,
 "terminal.integrated.inheritEnv": false,

 // Git
 "git.enableSmartCommit": true,
 "git.autofetch": true,
 "git.confirmSync": false,

 // Files
 "files.autoSave": "onFocusChange",
 "files.associations": {
 "*.qmd": "quarto",
 "*.Rmd": "rmarkdown",
 "renv.lock": "json"
 },

 // Quarto
 "quarto.visualEditor.spellingDictionary": "es_ES",

 // Positron-specific
 "positron.assistant.enable": true,
 "positron.assistant.showTokenUsage.enable": true
}
4. Interfaz de Usuario
4.1 Layout Principal
┌───┐
│ Title Bar │
├──────────────────┬──────────────────────────────────┤
│ │ │
│ Activity Bar │ │
│ (left/bottom) │ Editor Area │
│ │ │
│ - Explorer │ │
│ - Search ├──────────────────────────────────┤
│ - Source Ctrl │ │
│ - Run/Debug │ Console / Terminal │
│ - Extensions │ │
│ │ │
├──────────────────┴──────────────────────────────────┤
│ Status Bar │
└───┘
4.2 Panes Exclusivos de Positron
Variables Pane:
Muestra todas las variables en el entorno actual
- Nombre
- Tipo
- Valor/Tamaño
- Preview
Data Explorer:
Visualización interactiva de dataframes
- Filtrado
- Ordenamiento
- Búsqueda
- Exportación
Plots Pane:
Visualización de gráficos generados
- Historial de plots
- Zoom
- Exportar
Help Pane:
Documentación contextual
- Búsqueda integrada
- Ejemplos
- Argumentos de funciones
Console:
Shell interactivo para Python/R
- Completado de código
- Syntax highlighting
- Integración con Variables/Plots
4.3 Personalizar Layout
Activity Bar Position:
"workbench.activityBar.location": "bottom" // o "top", "left"
Side Bar Position:
"workbench.sideBar.location": "right" // o "left"
Command Palette Position:
Arrastrarlo a la posición deseada
5. Atajos de Teclado
5.1 Atajos Específicos de Positron
	Atajo
	Acción

	Ctrl+Enter
	Ejecutar línea/selección en Console

	Ctrl+Alt+Home
	Ejecutar desde inicio hasta línea actual

	Ctrl+Alt+End
	Ejecutar desde línea actual hasta fin

	Ctrl+Shift+0
	Reiniciar intérprete

	Ctrl+Shift+P
	Ejecutar archivo completo en Console

	F1
	Ayuda contextual

	Ctrl+K, Ctrl+R
	Ayuda contextual (alternativo)

	Ctrl+K, F
	Enfocar Console

	Ctrl+K, V
	Enfocar Variables pane

	Ctrl+L
	Limpiar Console

5.2 Atajos Generales (heredados de VS Code)
Editor:
	Atajo
	Acción

	Ctrl+P
	Quick Open (buscar archivo)

	Ctrl+Shift+P
	Command Palette

	Ctrl+,
	Settings

	Ctrl+B
	Toggle Sidebar

	Ctrl+J
	Toggle Panel

	Ctrl+Shift+E
	Explorer

	Ctrl+Shift+F
	Search

	Ctrl+Shift+G
	Source Control

	Ctrl+Shift+D
	Run & Debug

	Ctrl+Shift+X
	Extensions

Edición:
	Atajo
	Acción

	Ctrl+Space
	Trigger suggestions

	Ctrl+Shift+K
	Delete line

	Alt+Up/Down
	Move line up/down

	Shift+Alt+Up/Down
	Copy line up/down

	Ctrl+/
	Toggle comment

	Ctrl+Shift+[
	Fold region

	Ctrl+Shift+]
	Unfold region

	Ctrl+K Ctrl+0
	Fold all

	Ctrl+K Ctrl+J
	Unfold all

Navegación:
	Atajo
	Acción

	Ctrl+G
	Go to line

	Ctrl+Shift+O
	Go to symbol

	Ctrl+T
	Show all symbols

	F12
	Go to definition

	Alt+F12
	Peek definition

	Shift+F12
	Show references

	Ctrl+K F12
	Open definition to side

Terminal:
	Atajo
	Acción

	Ctrl+`
	Toggle terminal

	Ctrl+Shift+`
	New terminal

	Ctrl+Shift+C
	Copy

	Ctrl+Shift+V
	Paste

5.3 Personalizar Atajos
Abrir configuración:
Command Palette → Preferences: Open Keyboard Shortcuts
Archivo JSON:
Command Palette → Preferences: Open Keyboard Shortcuts (JSON)
Ejemplo de customización:
[
 {
 "key": "ctrl+shift+r",
 "command": "workbench.action.executeCode.console",
 "when": "editorTextFocus",
 "args": {
 "langId": "r",
 "code": "reprex::reprex_selection()",
 "focus": true
 }
 },
 {
 "key": "ctrl+alt+f",
 "command": "workbench.action.formatDocument"
 },
 {
 "key": "f2",
 "command": "positron.dataExplorer.openDataExplorer"
 }
]
6. Configuración Avanzada
6.1 Settings.json Completo (Base)
{
 // ==
 // EDITOR
 // ==
 "editor.fontSize": 13,
 "editor.fontFamily": "'JetBrains Mono', 'Fira Code', 'Hack Nerd Font', monospace",
 "editor.fontLigatures": true,
 "editor.lineNumbers": "on",
 "editor.rulers": [80, 120],
 "editor.wordWrap": "off",
 "editor.minimap.enabled": false,
 "editor.scrollbar.vertical": "auto",
 "editor.scrollbar.horizontal": "hidden",
 "editor.cursorBlinking": "smooth",
 "editor.cursorSmoothCaretAnimation": "on",
 "editor.cursorStyle": "line",
 "editor.formatOnSave": true,
 "editor.formatOnPaste": true,
 "editor.formatOnType": false,
 "editor.tabSize": 4,
 "editor.insertSpaces": true,
 "editor.detectIndentation": true,
 "editor.renderWhitespace": "selection",
 "editor.bracketPairColorization.enabled": true,
 "editor.guides.bracketPairs": true,
 "editor.linkedEditing": true,
 "editor.suggest.preview": true,
 "editor.inlineSuggest.enabled": true,
 "editor.quickSuggestions": {
 "other": true,
 "comments": false,
 "strings": false
 },

 // ==
 // WORKBENCH
 // ==
 "workbench.colorTheme": "Default Positron Dark",
 "workbench.iconTheme": "material-icon-theme",
 "workbench.productIconTheme": "Default",
 "workbench.activityBar.location": "bottom",
 "workbench.sideBar.location": "left",
 "workbench.panel.defaultLocation": "bottom",
 "workbench.statusBar.visible": true,
 "workbench.editor.showTabs": "multiple",
 "workbench.editor.tabSizing": "fit",
 "workbench.editor.highlightModifiedTabs": true,
 "workbench.editor.labelFormat": "short",
 "workbench.editor.limit.enabled": true,
 "workbench.editor.limit.value": 10,
 "workbench.editor.empty.hint": "hidden",
 "workbench.startupEditor": "none",

 // ==
 // TERMINAL
 // ==
 "terminal.integrated.fontFamily": "'Hack Nerd Font', 'FiraCode Nerd Font', monospace",
 "terminal.integrated.fontSize": 12,
 "terminal.integrated.fontWeight": "normal",
 "terminal.integrated.lineHeight": 1.2,
 "terminal.integrated.cursorBlinking": true,
 "terminal.integrated.cursorStyle": "line",
 "terminal.integrated.defaultProfile.linux": "bash",
 "terminal.integrated.copyOnSelection": true,
 "terminal.integrated.inheritEnv": false,
 "terminal.integrated.enablePersistentSessions": false,
 "terminal.integrated.scrollback": 10000,

 // ==
 // FILES
 // ==
 "files.autoSave": "onFocusChange",
 "files.trimTrailingWhitespace": true,
 "files.insertFinalNewline": true,
 "files.trimFinalNewlines": true,
 "files.associations": {
 "*.qmd": "quarto",
 "*.Rmd": "rmarkdown",
 "*.renv.lock": "json",
 "renv.lock": "json",
 "*.ipynb": "jupyter-notebook"
 },
 "files.exclude": {
 "**/.git": true,
 "**/.DS_Store": true,
 "**/__pycache__": true,
 "**/.Rproj.user": true,
 "**/.ipynb_checkpoints": true,
 "**/node_modules": true
 },

 // ==
 // GIT
 // ==
 "git.enableSmartCommit": true,
 "git.autofetch": true,
 "git.confirmSync": false,
 "git.openRepositoryInParentFolders": "always",
 "git.suggestSmartCommit": false,

 // ==
 // SEARCH
 // ==
 "search.exclude": {
 "**/node_modules": true,
 "**/bower_components": true,
 "**/.git": true,
 "**/__pycache__": true,
 "**/.Rproj.user": true,
 "**/.ipynb_checkpoints": true
 },

 // ==
 // DIFF EDITOR
 // ==
 "diffEditor.ignoreTrimWhitespace": false,
 "diffEditor.renderSideBySide": true,
 "diffEditor.wordWrap": "off",
 "diffEditor.maxComputationTime": 0,

 // ==
 // LANGUAGE-SPECIFIC
 // ==
 "[python]": {
 "editor.defaultFormatter": "charliermarsh.ruff",
 "editor.formatOnSave": true,
 "editor.codeActionsOnSave": {
 "source.organizeImports": "explicit"
 },
 "diffEditor.ignoreTrimWhitespace": false
 },
 "[r]": {
 "editor.tabSize": 2,
 "editor.insertSpaces": true
 },
 "[quarto]": {
 "editor.defaultFormatter": "quarto.quarto",
 "editor.wordWrap": "on"
 },
 "[markdown]": {
 "editor.defaultFormatter": "esbenp.prettier-vscode",
 "editor.wordWrap": "on"
 },
 "[yaml]": {
 "editor.defaultFormatter": "quarto.quarto",
 "editor.tabSize": 2
 },
 "[json]": {
 "editor.defaultFormatter": "vscode.json-language-features"
 },

 // ==
 // QUARTO
 // ==
 "quarto.visualEditor.spellingDictionary": "es_ES",
 "quarto.render.previewType": "internal",

 // ==
 // POSITRON-SPECIFIC
 // ==
 "positron.assistant.enable": true,
 "positron.assistant.alwaysEnableApplyInEditorAction": true,
 "positron.assistant.alwaysIncludeCopilotTools": true,
 "positron.assistant.showTokenUsage.enable": true
}
7. Python en Positron
7.1 Prerequisitos
Versiones soportadas: Python 3.9 - 3.13
Gestores recomendados:
· uv (recomendado)
· pyenv
· conda/mamba
· venv
7.2 Instalar Python
Con uv (recomendado):
Instalar uv
curl -LsSf https://astral.sh/uv/install.sh | sh

Instalar Python
uv python install 3.12

Ver versiones instaladas
uv python list
Con pyenv:
Instalar pyenv
curl https://pyenv.run | bash

Instalar Python
pyenv install 3.12.0
pyenv global 3.12.0
Con conda:
Crear entorno
conda create -n myenv python=3.12
conda activate myenv
7.3 Configurar Python en Positron
Settings para Anaconda:
{
 "python.defaultInterpreterPath": "/home/achalmaedison/anaconda3/bin/python",
 "python.condaPath": "/home/achalmaedison/anaconda3/bin/conda",
 "python.terminal.activateEnvironment": true,
 "python.terminal.activateEnvInCurrentTerminal": true
}
IPython Kernel:
{
 // Usar IPython kernel empaquetado (recomendado)
 "python.useBundledIpykernel": true,

 // O instalar manualmente
 // python.useBundledIpykernel": false
}
7.4 Seleccionar Intérprete
Command Palette:
Python: Select Interpreter
Desde Console: Click en el selector de intérprete en la esquina superior derecha
7.5 Características Python
Code Completion:
· IntelliSense (Jedi)
· Type hints
· Import suggestions
Type Checking:
· Pyright integrado
· Configuración en pyrightconfig.json
Formatting:
· Ruff (recomendado)
· Black
· autopep8
Linting:
· Ruff
· Pylint
· Flake8
7.6 Configuración Python Avanzada
{
 // Intérprete
 "python.defaultInterpreterPath": "/path/to/python",

 // IPython
 "python.useBundledIpykernel": true,
 "python.enableAutoReload": true,

 // Formatting
 "python.formatting.provider": "none",
 "[python]": {
 "editor.defaultFormatter": "charliermarsh.ruff",
 "editor.formatOnSave": true,
 "editor.codeActionsOnSave": {
 "source.organizeImports": "explicit",
 "source.fixAll": "explicit"
 }
 },

 // Linting
 "python.linting.enabled": true,
 "python.linting.ruffEnabled": true,

 // Terminal
 "python.terminal.activateEnvironment": true,
 "python.terminal.activateEnvInCurrentTerminal": true
}
7.7 Paquetes Esenciales
Data Science
pip install numpy pandas matplotlib seaborn scikit-learn

Jupyter
pip install ipykernel jupyter

Development
pip install ruff black isort mypy pytest

Para Positron Console
pip install ipython
8. R en Positron
8.1 Prerequisitos
Versión requerida: R 4.2 o superior
8.2 Instalar R
Linux:
Ubuntu/Debian
sudo apt install r-base r-base-dev

O desde CRAN
https://cloud.r-project.org/
macOS:
Con Homebrew
brew install r

O descargar desde CRAN
https://cloud.r-project.org/
Con rig (múltiples versiones):
Instalar rig
curl -Ls https://github.com/r-lib/rig/releases/latest/download/rig-linux-latest.tar.gz | sudo tar xz -C /usr/local

Instalar R
rig add release
rig add devel

Cambiar versión
rig default 4.3
8.3 Paquetes R Esenciales para Positron
Paquetes core
install.packages(c(
 "usethis",
 "cli",
 "crayon",
 "rlang",
 "roxygen2",
 "pkgload"
))

Con pak (recomendado)
pak::pak(c(
 "usethis",
 "cli",
 "crayon",
 "rlang",
 "roxygen2",
 "pkgload"
))

Tidyverse
install.packages("tidyverse")

Desarrollo
install.packages(c(
 "devtools",
 "testthat",
 "lintr",
 "styler"
))
8.4 Configurar R en Positron
Seleccionar intérprete R:
Command Palette → R: Select Interpreter
Settings:
{
 "r.alwaysUseActiveTerminal": true,
 "r.bracketedPaste": true,
 "r.plot.useHttpgd": true
}
8.5 IRKernel
Positron maneja IRKernel automáticamente. Si necesitas configurarlo manualmente:
Instalar IRKernel
install.packages('IRkernel')

Registrar con Jupyter
IRkernel::installspec(user = TRUE)
8.6 Características R
Code Completion:
· Funciones
· Paquetes
· Variables
· Archivos
Help:
· Documentación integrada
· Ejemplos
· Vignettes
Debugging:
· Breakpoints
· Step through
· Inspect variables
8.7 Rtools (Windows)
Si usas Windows y desarrollas paquetes:
Con rig
rig system rtools add

O manual desde CRAN
https://cran.r-project.org/bin/windows/Rtools/
9. Extensiones
9.1 Open VSX vs VS Marketplace
Positron usa Open VSX por razones de licencia. La mayoría de extensiones populares están disponibles, pero algunas pueden faltar.
9.2 Acceder a Extensiones
View → Extensions (Ctrl+Shift+X)
9.3 Extensiones Pre-instaladas
Built-in (core):
· Python backend (posit.positron-python)
· R backend (posit.air-vscode)
Bootstrapped (auto-instaladas):
· charliermarsh.ruff: Linter Python
· meta.pyrefly: Python language server
· posit.shiny: Soporte Shiny
· posit.publisher: Publishing tool
· quarto.quarto: Soporte Quarto
9.4 Extensiones Recomendadas
Temas:
- material-icon-theme (iconos)
- One Dark Pro
- GitHub Theme
- Dracula
- Nord
Productividad:
- GitLens (si disponible)
- Better Comments
- Bookmarks
- Todo Tree
Formateo:
- Prettier (esbenp.prettier-vscode)
- EditorConfig
Markdown/Docs:
- Markdown All in One
- Markdown Preview Enhanced
LaTeX:
- LaTeX Workshop (James-Yu.latex-workshop)
9.5 Instalar Extensión
Desde GUI:
1. Abrir Extensions (Ctrl+Shift+X)
1. Buscar extensión
1. Click en Install
Desde VSIX:
Command Palette → Extensions: Install from VSIX
9.6 Gestionar Extensiones Bootstrapped
Si quieres deshabilitar una extensión bootstrapped:
{
 "extensions.allowed": {
 "posit.air-vscode": false, // Deshabilitar R si solo usas Python
 "*": true
 }
}
9.7 Extensiones No Compatibles
NO usar:
· ms-python.python (Positron tiene soporte Python nativo)
· REditorSupport.r (conflicto con posit.air-vscode)
10. Temas y Personalización Visual
10.1 Temas de Color
Cambiar tema:
Command Palette → Preferences: Color Theme (Ctrl+K Ctrl+T)
Temas incluidos:
· Default Positron Dark
· Default Positron Light
· Dark+ (heredado de VS Code)
· Light+ (heredado de VS Code)
Instalar más temas:
Extensions → Buscar "theme"
Temas populares:
· One Dark Pro
· Material Theme
· GitHub Theme
· Dracula
· Nord
· Gruvbox
En settings.json:
{
 "workbench.colorTheme": "One Dark Pro Mix"
}
10.2 Temas de Iconos
Command Palette → Preferences: File Icon Theme
Recomendados:
· Material Icon Theme (recomendado)
· Seti
· Minimal
{
 "workbench.iconTheme": "material-icon-theme"
}
10.3 Customizar Colores
{
 "workbench.colorCustomizations": {
 "[Default Positron Dark]": {
 "editor.background": "#1a1a1a",
 "sideBar.background": "#1e1e1e",
 "activityBar.background": "#252525"
 }
 },
 "editor.tokenColorCustomizations": {
 "[Default Positron Dark]": {
 "comments": "#6A9955",
 "strings": "#CE9178"
 }
 }
}
10.4 Fuentes
Fuentes recomendadas con ligaduras:
· JetBrains Mono
· Fira Code
· Cascadia Code
· Hack Nerd Font
· Victor Mono
Configurar:
{
 "editor.fontFamily": "'JetBrains Mono', 'Fira Code', monospace",
 "editor.fontLigatures": true,
 "editor.fontSize": 13,
 "terminal.integrated.fontFamily": "'Hack Nerd Font', monospace",
 "terminal.integrated.fontSize": 12
}
11. Terminal
11.1 Terminal vs Console
Terminal:
· Shell del sistema (bash, zsh, fish, etc.)
· Comandos del sistema
· Instalación de paquetes
· Operaciones de archivos
Console:
· Intérprete interactivo (IPython/IRKernel)
· Ejecución de código Python/R
· Inspección de variables
· Integración con Variables/Plots panes
11.2 Configurar Terminal
{
 // Perfil por defecto
 "terminal.integrated.defaultProfile.linux": "bash",

 // Fuente
 "terminal.integrated.fontFamily": "'Hack Nerd Font', monospace",
 "terminal.integrated.fontSize": 12,

 // Comportamiento
 "terminal.integrated.copyOnSelection": true,
 "terminal.integrated.cursorBlinking": true,
 "terminal.integrated.cursorStyle": "line",
 "terminal.integrated.scrollback": 10000,

 // Entorno
 "terminal.integrated.inheritEnv": false
}
11.3 Perfiles de Terminal
{
 "terminal.integrated.profiles.linux": {
 "bash": {
 "path": "/bin/bash",
 "icon": "terminal-bash"
 },
 "zsh": {
 "path": "/usr/bin/zsh",
 "icon": "terminal"
 },
 "fish": {
 "path": "/usr/bin/fish",
 "icon": "terminal"
 }
 }
}
11.4 Atajos de Terminal
	Atajo
	Acción

	Ctrl+`
	Toggle terminal

	Ctrl+Shift+`
	New terminal

	Ctrl+Shift+C
	Copy

	Ctrl+Shift+V
	Paste

	Ctrl+Shift+5
	Split terminal

12. Console
12.1 ¿Qué es el Console?
El Console es una shell interactiva para Python (IPython) o R (IRKernel) integrada directamente en Positron.
Características:
· Ejecución interactiva de código
· Code completion
· Syntax highlighting
· Integración con Variables pane
· Integración con Plots pane
· Historial persistente
12.2 Ejecutar Código en Console
Desde Editor:
· Ctrl+Enter: Ejecutar línea/selección
· Ctrl+Alt+Home: Ejecutar desde inicio hasta cursor
· Ctrl+Alt+End: Ejecutar desde cursor hasta fin
· Ctrl+Shift+P: Ejecutar archivo completo
Directamente en Console:
· Escribir código y presionar Enter
12.3 Console Settings
{
 // Python
 "python.useBundledIpykernel": true,
 "python.enableAutoReload": true,

 // R
 "r.alwaysUseActiveTerminal": true
}
12.4 Atajos Console
	Atajo
	Acción

	Ctrl+K, F
	Enfocar Console

	Ctrl+L
	Limpiar Console

	Ctrl+Shift+0
	Reiniciar intérprete

	Ctrl+Up/Down
	Navegar historial

13. Variables Pane
13.1 ¿Qué es Variables Pane?
Panel que muestra todas las variables en el entorno actual.
Información mostrada:
· Nombre
· Tipo
· Valor (para primitivos)
· Tamaño (para colecciones)
· Dimensiones (para dataframes)
13.2 Usar Variables Pane
Abrir:
View → Variables (Ctrl+K, V)
Operaciones:
· Click en variable para expandir
· Double-click para abrir en Data Explorer (si es dataframe)
· Right-click para opciones (copy, delete, etc.)
13.3 Filtrar Variables
Usa la barra de búsqueda en el panel para filtrar variables por nombre.
14. Data Explorer
14.1 ¿Qué es Data Explorer?
Visualizador interactivo de dataframes (pandas, tibble, data.frame).
Características:
· Vista tabular de datos
· Ordenamiento por columnas
· Filtrado
· Búsqueda
· Estadísticas de columnas
· Exportar a CSV/Excel
14.2 Abrir Data Explorer
Desde Variables Pane: Double-click en un dataframe
Desde Console:
Python
import pandas as pd
df = pd.read_csv('data.csv')
Double-click en 'df' en Variables pane
R
df <- read.csv('data.csv')
View(df)
Command Palette:
Data Explorer: Open Data Explorer
14.3 Usar Data Explorer
Ordenar: Click en header de columna
Filtrar: Click en icono de filtro en header
Buscar: Ctrl+F en Data Explorer
Exportar: Right-click → Export
15. Plots Pane
15.1 ¿Qué es Plots Pane?
Panel para visualización de gráficos generados en Python o R.
Características:
· Historial de plots
· Zoom
· Pan
· Exportar (PNG, SVG, PDF)
· Tamaño ajustable
15.2 Generar Plots
Python (matplotlib):
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 10, 100)
y = np.sin(x)

plt.plot(x, y)
plt.title('Sin Wave')
plt.show()
Python (seaborn):
import seaborn as sns
import pandas as pd

df = pd.read_csv('data.csv')
sns.scatterplot(data=df, x='x', y='y', hue='category')
plt.show()
R (ggplot2):
library(ggplot2)

ggplot(mtcars, aes(x = mpg, y = hp)) +
 geom_point() +
 theme_minimal()
15.3 Exportar Plots
Desde Plots Pane:
1. Hover sobre el plot
1. Click en icono de exportar
1. Elegir formato (PNG, SVG, PDF)
1. Especificar ubicación
Desde código:
Python
plt.savefig('plot.png', dpi=300)
R
ggsave('plot.png', width = 8, height = 6, dpi = 300)
16. Help Pane
16.1 ¿Qué es Help Pane?
Panel de documentación contextual integrado.
Características:
· Documentación de funciones
· Argumentos
· Ejemplos
· Links a vignettes/tutorials
· Búsqueda
16.2 Obtener Ayuda
Atajo F1: Coloca cursor sobre función y presiona F1
Desde Console:
Python
help(print)
?print
R
?mean
help(mean)
Command Palette:
Help: Show Help for Symbol Under Cursor
17. Quarto
17.1 ¿Qué es Quarto?
Sistema de publicación científica y técnica de código abierto.
Formatos de salida:
· HTML
· PDF
· Word
· Reveal.js (presentations)
· Dashboards
· Websites
· Books
17.2 Configurar Quarto
Instalar Quarto:
Linux
sudo curl -LO https://quarto.org/download/latest/quarto-linux-amd64.deb
sudo dpkg -i quarto-linux-amd64.deb

macOS
brew install quarto

Verificar
quarto --version
Settings:
{
 "quarto.visualEditor.spellingDictionary": "es_ES",
 "quarto.render.previewType": "internal",
 "[quarto]": {
 "editor.defaultFormatter": "quarto.quarto",
 "editor.wordWrap": "on"
 }
}
17.3 Crear Documento Quarto
Nuevo archivo:
File → New File → Quarto Document
Estructura básica (.qmd):

title: "Mi Documento"
author: "Tu Nombre"
format: html
execute:
 echo: true

Introducción

Este es un documento Quarto.

::: {.cell}
``` {.python .cell-code}
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv('data.csv')
df.head()
:::
18. Análisis
plt.plot(df['x'], df['y'])
plt.show()
18.1 Renderizar
Command Palette:
Quarto: Render Document
Atajo:
Ctrl+Shift+K
Terminal:
quarto render document.qmd
quarto render document.qmd --to pdf
18.2 Preview
Live preview:
Quarto: Preview
18.3 Características Quarto en Positron
· Syntax highlighting
· Code execution inline
· Preview live
· Autocompletado YAML
· Snippets
19. Jupyter Notebooks
19.1 Soporte Jupyter
Positron tiene soporte nativo para Jupyter notebooks (.ipynb).
Características:
· Ejecución de celdas
· Output inline
· Plots inline
· Variables en Variables pane
· Code completion
19.2 Crear Notebook
File → New File → Jupyter Notebook
19.3 Seleccionar Kernel
Click en “Select Kernel” en la esquina superior derecha
19.4 Ejecutar Celdas
Atajos:
· Shift+Enter: Ejecutar celda y avanzar
· Ctrl+Enter: Ejecutar celda
· Alt+Enter: Ejecutar celda e insertar abajo
19.5 Convertir entre Quarto y Jupyter
Quarto → Jupyter:
quarto convert document.qmd
Jupyter → Quarto:
quarto convert notebook.ipynb
20. Git y Control de Versiones
20.1 Configurar Git
Primera vez:
git config --global user.name "Tu Nombre"
git config --global user.email "tu@email.com"
Settings Positron:
{
    "git.enableSmartCommit": true,
    "git.autofetch": true,
    "git.confirmSync": false,
    "git.openRepositoryInParentFolders": "always"
}
20.2 Source Control Panel
Abrir:
View → Source Control (Ctrl+Shift+G)
Operaciones:
· Ver cambios
· Stage/Unstage
· Commit
· Push/Pull
· Ver historial
· Crear branches
· Merge
20.3 Workflow Git
1. Hacer cambios en archivos
2. Ver cambios en Source Control panel
3. Stage cambios (click en +)
4. Escribir mensaje de commit
5. Click en ✓ (commit)
6. Sync changes (push/pull)
20.4 GitLens (si disponible)
Instalar desde Extensions si está disponible en Open VSX.
21. AI Tools
21.1 Positron Assistant
Asistente AI integrado para ayudar con código.
Habilitar:
{
    "positron.assistant.enable": true,
    "positron.assistant.alwaysEnableApplyInEditorAction": true,
    "positron.assistant.showTokenUsage.enable": true
}
Usar:
Command Palette → Positron: Open Assistant
Características:
· Generar código
· Explicar código
· Refactorizar
· Documentar
· Debuggear
21.2 Databot
Asistente especializado para análisis de datos.
Usar:
Command Palette → Positron: Open Databot
Ejemplos de prompts:
"Crear un gráfico de dispersión de x vs y"
"Agrupar por categoría y calcular media"
"Filtrar datos donde columna > 100"
"Crear modelo lineal de y ~ x"
22. Configuración Minimalista
22.1 Objetivos
· UI limpia
· Sin distracciones
· Foco en código
· Performance óptima
22.2 Settings Minimalistas
{
    // ==========================================
    // MINIMALISTA
    // ==========================================
    
    // Editor limpio
    "editor.minimap.enabled": false,
    "editor.scrollbar.vertical": "hidden",
    "editor.scrollbar.horizontal": "hidden",
    "editor.lineNumbers": "off",  // o "relative"
    "editor.glyphMargin": false,
    "editor.folding": false,
    "editor.guides.indentation": false,
    "editor.renderWhitespace": "none",
    "editor.renderLineHighlight": "none",
    "editor.overviewRulerBorder": false,
    
    // Workbench limpio
    "workbench.statusBar.visible": false,
    "workbench.activityBar.location": "hidden",  // o "bottom"
    "workbench.editor.showTabs": "single",
    "workbench.editor.tabSizing": "shrink",
    "breadcrumbs.enabled": false,
    "workbench.sideBar.location": "right",
    
    // Terminal limpio
    "terminal.integrated.tabs.enabled": false,
    
    // Tema minimalista
    "workbench.colorTheme": "Default Positron Dark",
    "workbench.iconTheme": "minimal",
    
    // Zen Mode (Ctrl+K Z)
    "zenMode.centerLayout": true,
    "zenMode.fullScreen": false,
    "zenMode.hideLineNumbers": false,
    "zenMode.hideTabs": true,
    "zenMode.hideStatusBar": true,
    
    // Resto de settings esenciales
    "editor.fontSize": 14,
    "editor.fontFamily": "'JetBrains Mono', monospace",
    "editor.fontLigatures": true,
    "editor.formatOnSave": true,
    "files.autoSave": "onFocusChange"
}
22.3 Zen Mode
Activar:
Command Palette → View: Toggle Zen Mode (Ctrl+K Z)
O personalizar:
{
    "zenMode.centerLayout": true,
    "zenMode.fullScreen": false,
    "zenMode.hideLineNumbers": false,
    "zenMode.hideTabs": true,
    "zenMode.hideStatusBar": true,
    "zenMode.hideActivityBar": true,
    "zenMode.restore": true
}
23. Mi Configuración Específica
Esta es mi configuración de VS Code adaptada para Positron:
{
    // ==========================================
    // PYTHON (ANACONDA)
    // ==========================================
    "python.defaultInterpreterPath": "/home/achalmaedison/anaconda3/bin/python",
    "python.condaPath": "/home/achalmaedison/anaconda3/bin/conda",
    "python.terminal.activateEnvironment": true,
    "python.terminal.activateEnvInCurrentTerminal": true,
    "python.useBundledIpykernel": true,
    "python.enableAutoReload": true,
    
    // ==========================================
    // TERMINAL
    // ==========================================
    "terminal.integrated.inheritEnv": false,
    "terminal.integrated.fontSize": 12,
    "terminal.integrated.fontFamily": "Hack Nerd Font",
    "terminal.integrated.copyOnSelection": true,
    "terminal.integrated.cursorBlinking": true,
    "terminal.integrated.cursorStyle": "underline",
    "terminal.integrated.cursorStyleInactive": "line",
    "terminal.integrated.defaultProfile.linux": "fish",  // Cambiado de zsh a fish
    "terminal.integrated.enablePersistentSessions": false,
    "terminal.integrated.suggest.enabled": true,
    "terminal.integrated.accessibleViewFocusOnCommandExecution": true,
    
    // ==========================================
    // EDITOR
    // ==========================================
    "editor.fontSize": 13,
    "editor.fontFamily": "'Hack Nerd Font', 'JetBrains Mono', monospace",
    "editor.fontLigatures": true,
    "editor.minimap.enabled": false,
    "editor.minimap.autohide": true,
    "editor.scrollbar.horizontal": "hidden",
    "editor.scrollbar.vertical": "hidden",
    "editor.overviewRulerBorder": false,
    "editor.formatOnSave": true,
    "editor.formatOnPaste": true,
    "editor.formatOnType": true,
    "editor.glyphMargin": false,
    "editor.linkedEditing": true,
    "editor.cursorBlinking": "expand",
    "editor.cursorSmoothCaretAnimation": "on",
    "editor.guides.indentation": false,
    "editor.matchBrackets": "never",
    "editor.suggest.preview": true,
    "editor.inlineSuggest.syntaxHighlightingEnabled": true,
    
    // ==========================================
    // WORKBENCH
    // ==========================================
    "workbench.colorTheme": "One Dark Pro Mix",  // Tu tema favorito
    "workbench.iconTheme": "material-icon-theme",
    "workbench.productIconTheme": "fluent-icons",
    "workbench.activityBar.location": "bottom",  // Mantener en bottom
    "workbench.sideBar.location": "right",
    "workbench.statusBar.visible": false,  // Oculto para minimalista
    "workbench.editor.showTabs": "single",
    "workbench.editor.tabSizing": "fixed",
    "workbench.editor.highlightModifiedTabs": true,
    "workbench.editor.limit.enabled": true,
    "workbench.editor.empty.hint": "hidden",
    "workbench.editor.wrapTabs": true,
    "workbench.editor.centeredLayoutFixedWidth": true,
    "window.customTitleBarVisibility": "auto",
    "breadcrumbs.enabled": false,
    
    // ==========================================
    // FILES
    // ==========================================
    "files.autoSave": "onFocusChange",
    "files.associations": {
        "renv.lock": "json",
        "*.qmd": "quarto",
        "*.Rmd": "rmarkdown"
    },
    
    // ==========================================
    // GIT
    // ==========================================
    "git.enableSmartCommit": true,
    "git.autofetch": true,
    "git.confirmSync": false,
    "git.openRepositoryInParentFolders": "always",
    
    // ==========================================
    // DIFF EDITOR
    // ==========================================
    "diffEditor.ignoreTrimWhitespace": false,
    "diffEditor.maxComputationTime": 0,
    "diffEditor.codeLens": true,
    "diffEditor.wordWrap": "off",
    
    // ==========================================
    // LANGUAGE-SPECIFIC
    // ==========================================
    "[python]": {
        "editor.defaultFormatter": "charliermarsh.ruff",
        "diffEditor.ignoreTrimWhitespace": false
    },
    "[quarto]": {
        "editor.defaultFormatter": "quarto.quarto"
    },
    "[markdown]": {
        "editor.defaultFormatter": "esbenp.prettier-vscode"
    },
    "[yaml]": {
        "editor.defaultFormatter": "quarto.quarto"
    },
    "[latex]": {
        "editor.defaultFormatter": "James-Yu.latex-workshop"
    },
    
    // ==========================================
    // QUARTO
    // ==========================================
    "quarto.visualEditor.spellingDictionary": "es_ES",
    
    // ==========================================
    // NOTEBOOKS
    // ==========================================
    "notebook.output.wordWrap": true,
    "jupyter.interactiveWindow.textEditor.executeSelection": true,
    
    // ==========================================
    // MISC
    // ==========================================
    "debug.console.wordWrap": false,
    "chat.editor.wordWrap": "on",
    "yaml.schemas": {
        "https://quarto.org/schemas/quarto.yaml": "*.qmd"
    },
    
    // ==========================================
    // POSITRON-SPECIFIC
    // ==========================================
    "positron.assistant.enable": true,
    "positron.assistant.alwaysEnableApplyInEditorAction": true,
    "positron.assistant.alwaysIncludeCopilotTools": true,
    "positron.assistant.showTokenUsage.enable": true,
    
    // ==========================================
    // ACCESSIBILITY (ocultar para minimalista)
    // ==========================================
    "accessibility.verbosity.terminal": false,
    "accessibility.hideAccessibleView": true,
    
    // ==========================================
    // EXTENSIONES (si las instalas)
    // ==========================================
    // GitLens (si disponible)
    "gitlens.graph.minimap.additionalTypes": [
        "localBranches",
        "stashes",
        "remoteBranches",
        "pullRequests",
        "tags"
    ],
    
    // CodeSnap (si disponible)
    "codesnap.transparentBackground": true,
    "codesnap.showWindowTitle": true,
    "codesnap.containerPadding": "0em",
    "codesnap.roundedCorners": false,
    
    // LaTeX Workshop (si usas LaTeX)
    "latex-workshop.formatting.latex": "latexindent",
    "latex-workshop.latex.option.maxPrintLine.enabled": false,
    
    // Indenticator (si lo instalas)
    "indenticator.width": 0.5,
    "indenticator.color.dark": "rgba(255,255,255,0.1)"
}
23.1 Extensiones a Instalar (desde Open VSX)
Para replicar el setup de VS Code, se instala:
1. Material Icon Theme
1. One Dark Pro (tema)
1. Prettier (formateo Markdown)
1. LaTeX Workshop (si usas LaTeX)
1. GitLens (si disponible)
1. Better Comments (opcional)
1. Code Spell Checker (opcional, español)
23.2 Notas sobre Extensiones No Disponibles
No disponibles/innecesarias en Positron:
· animations (vscode-animations): No compatible
· glassit: No compatible (transparencia)
· apc.imports: No compatible
· Python extension: Ya incluida nativamente
· GitHub Copilot: Usa Positron Assistant en su lugar
24. Trucos y Tips
24.1 Command Palette
Ctrl+Shift+P
Todo está en el Command Palette. No recuerdas un atajo? Búscalo aquí.
24.2 Quick Open
Ctrl+P
Abre archivos rápidamente sin usar el Explorer.
24.3 Multi-Cursor
Alt+Click: Añadir cursor
Ctrl+Alt+Up/Down: Añadir cursor arriba/abajo
Ctrl+D: Seleccionar siguiente ocurrencia
Ctrl+Shift+L: Seleccionar todas las ocurrencias
24.4 Snippets
Crea tus propios snippets en:
File → Preferences → Configure User Snippets
Ejemplo Python:
{
    "Import pandas": {
        "prefix": "imp",
        "body": [
            "import pandas as pd",
            "import numpy as np",
            "import matplotlib.pyplot as plt"
        ]
    }
}
24.5 Integrated Terminal Profiles
Configura perfiles para diferentes shells o entornos virtuales.
24.6 Workspace Settings
Para proyectos específicos, usa workspace settings:
.vscode/settings.json
24.7 Fold/Unfold Code
Ctrl+Shift+[: Fold
Ctrl+Shift+]: Unfold
Ctrl+K Ctrl+0: Fold all
Ctrl+K Ctrl+J: Unfold all
24.8 Breadcrumbs
Si los necesitas:
{
    "breadcrumbs.enabled": true
}
24.9 Integrated Git Diff
Click en archivo modificado en Source Control
24.10 Sync Settings
Positron puede sincronizar settings entre máquinas (similar a VS Code Settings Sync).
24.11 Trucos prácticos que uso día a día
1. Ejecutar código selectivamente sin salir del editor
· Ctrl + Enter → Ejecuta la línea actual o selección
· Ctrl + Alt + Home → Ejecuta todo desde el inicio del archivo hasta la línea actual (ideal para setups y carga de datos)
· Ctrl + Alt + End → Ejecuta desde la línea actual hasta el final (muy útil para pruebas rápidas al final del script)
· Ctrl + Shift + P (o Cmd en macOS) → Ejecuta archivo completo en la consola
Truco pro: Combina Ctrl + Alt + Home + Ctrl + Enter para rehacer rápidamente todo el análisis desde cero sin tocar el ratón.
2. Navegación ultrarrápida entre editor y consola
Ctrl + K → F     → Enfocar consola (muy rápido para escribir rápido)
Ctrl + K → V     → Enfocar panel de Variables
Ctrl + K → R     → Enfocar panel de Help (documentación)
Ctrl + L         → Limpiar la consola (equivalente al clásico Ctrl + L de RStudio)
Ctrl + Shift + 0 → Reiniciar el intérprete (cuando todo se pone loco)
Truco diario: Crea un flujo mental “editor → consola → variables” y usa estos tres atajos en secuencia rapidísima.
3. El workflow más rápido para explorar dataframes (mi favorito)
1. Cargas datos en consola o script:
· import pandas as pd
df = pd.read_csv("datos_grandes.csv")
· o
· df <- read_csv("datos_grandes.csv")
1. Opciones rápidas de exploración:
· Doble clic en df en el Variables Pane → abre Data Explorer completo (filtrar, ordenar, buscar, estadísticas)
· View(df) (R) o df.head(20) (Python) → vista rápida en consola
· Clic derecho en variable → “View in Data Explorer”
· Atajo personalizado recomendado (agrega a keybindings.json):
· {
    "key": "f2",
    "command": "positron.dataExplorer.openDataExplorer",
    "when": "positronVariablesFocus"
}
4. Trucos rápidos de transformación de texto
Positron hereda estas joyas de Code OSS:
· Mayúsculas / minúsculas / título / oración:
19. Selecciona texto
19. Ctrl + Shift + P → escribe “Transform to”
19. Elige: Upper Case / Lower Case / Title Case / Sentence Case
· Multi-cursor express (imprescindible para renombrar columnas):
· Ctrl + D → selecciona siguiente ocurrencia
· Ctrl + Shift + L → selecciona todas las ocurrencias en el archivo
· Alt + Click → múltiples cursores manuales
· Truco ultra-rápido: Ctrl + Shift + P → “Join Lines” (une líneas seleccionadas en una) → genial para convertir listas largas en una sola línea de código.
5. Cambio rápido entre Python y R en el mismo proyecto
· Usa el selector de intérprete en la barra superior (junto al nombre del archivo)
· Puedes tener dos sesiones simultáneas: una Python y otra R
· Truco práctico:
19. Cargas datos en Python (pandas)
19. Cambias a sesión R
19. Usas reticulate::py$df para traer el dataframe de Python a R
19. Sigues limpiando con tidyverse
6. Trucos con Plots Pane que ahorran mucho tiempo
· Historial automático de gráficos → flechas arriba/abajo para navegar
· Clic derecho en plot → Exportar (PNG/SVG/PDF) rápido
· Truco: plt.show() (Python) o print() (ggplot2) → aparece automáticamente
· Usa plt.ion() (modo interactivo matplotlib) para actualizar gráficos en vivo sin repetir show()
7. Bonus: Mini-flujo de análisis exprés
1. Ctrl + N → nuevo script
2. Pega/pega datos o carga rápida
3. Ctrl + Alt + Home → ejecuta todo hasta cursor
4. Doble clic variable → Data Explorer
5. F1 sobre función → Help pane
6. Selecciona gráfico → Plots pane
7. Ctrl + Shift + K → renderiza Quarto (si estás en .qmd)
25. Solución de Problemas
25.1 Problema: Python interpreter no detectado
Solución:
Command Palette → Python: Select Interpreter
O especificar manualmente:
{
    "python.defaultInterpreterPath": "/path/to/python"
}
25.2 Problema: R no funciona
Verificar instalación:
which R
R --version
Instalar paquetes necesarios:
pak::pak(c("usethis", "cli", "crayon", "rlang"))
25.3 Problema: Console no inicia
Reiniciar intérprete:
Ctrl+Shift+0
Verificar IPython:
pip install ipython
25.4 Problema: Extensiones no aparecen
Recordar: Positron usa Open VSX, no VS Marketplace. Algunas extensiones pueden no estar disponibles.
Alternativa: Instalar .vsix manualmente desde GitHub de la extensión.
25.5 Problema: Terminal no hereda PATH
{
    "terminal.integrated.inheritEnv": false
}
O agregar al shell config (~/.bashrc, ~/.zshrc, etc.):
export PATH="/path/to/anaconda3/bin:$PATH"
25.6 Problema: Plots no aparecen
Python:
import matplotlib.pyplot as plt
plt.ion()  # Interactive mode
R:
options(device = "quartz")  # macOS
# o
options(device = "x11")  # Linux
25.7 Problema: Quarto no renderiza
Verificar instalación:
quarto check
Reinstalar extensión:
Extensions → Quarto → Reload
25.8 Problema: Settings no se guardan
Ubicación correcta:
~/.config/Positron/User/settings.json
Permisos:
chmod 644 ~/.config/Positron/User/settings.json
25.9 Problema: Performance lenta
Deshabilitar extensiones innecesarias
Reducir history:
{
    "terminal.integrated.scrollback": 1000
}
Deshabilitar features:
{
    "editor.minimap.enabled": false,
    "editor.suggest.preview": false
}
26. Conclusión
26.1 Resumen de Cambios de VS Code a Positron
Lo Mismo:
· Editor de código
· Atajos de teclado (95%)
· Terminal
· Extensions system
· Git integration
· Settings system
Lo Nuevo:
· Console (IPython/IRKernel)
· Variables Pane
· Data Explorer
· Plots Pane
· Help Pane
· Connections Pane
· Soporte Python/R nativo
· AI Assistant (Positron Assistant, Databot)
Lo Diferente:
· Open VSX en lugar de VS Marketplace
· Algunas extensiones no disponibles
· Mejor integración para data science
26.2 Próximos Pasos
1. Instalar Positron
1. Importar settings de VS Code
1. Configurar Python/R
1. Instalar extensiones esenciales
1. Personalizar tema y layout
1. Explorar Console y panes
1. Crear tu primer documento Quarto
26.3 Recursos
Documentación:
· https://positron.posit.co/
· https://github.com/posit-dev/positron
Comunidad:
· GitHub Discussions: https://github.com/posit-dev/positron/discussions
· Posit Community: https://community.posit.co/
Aprendizaje:
· Quarto: https://quarto.org/
· Python: https://docs.python.org/
· R: https://www.r-project.org/
27. Publicaciones Similares
Si te interesó este artículo, te recomendamos que explores otros blogs y recursos relacionados que pueden ampliar tus conocimientos. Aquí te dejo algunas sugerencias:
1.  Comandos De Informacion Windows
1.  Adb
1.  Limpieza Y Optimizacion De Pc
1.  Usando Apk En Windown 11
1.  Gestionar Versiones De Jdk En Kubuntu
1.  Instalar Tor Browser
1.  Crear Enlaces Duros O Hard Link En Linux
1.  Comandos Vim
1.  Guia De Git Y Github
1.  00 Primeros Pasos En Linux
1.  01 Introduccion Linux
1.  02 Distribuciones Linux
1.  03 Instalacion Linux
1.  04 Administracion Particiones Volumenes
1.  Atajos De Teclado Y Comandos Para Usar Vim
1.  Instalando Specitify
1.  Gestiona Tus Dotfiles Con Gnu Stow
Esperamos que encuentres estas publicaciones igualmente interesantes y útiles. ¡Disfruta de la lectura!



